MATH 665 PROBLEM SET 1

FALL 2024

Due Thursday, September 19. You may consult books, papers, and websites as long as you cite all sources and write up your solutions in your own words. **Updated** on 9/14, in blue.

Problem 1. (1) Compute the sizes of the conjugacy classes of S_4, S_5, S_6 . (2) Use (1) to show that A_4 is not simple, but A_5 and A_6 are.

Problem 2. (1) Show that $|SL_2(\mathbf{F}_7)| = 2 \cdot 3 \cdot 7 \cdot 8$.

- (2) Find a reference listing the eleven conjugacy classes of $SL_2(\mathbf{F}_7)$.
- (3) Use (2) to compute the six conjugacy classes of

$$PSL_2(\mathbf{F}_7) = SL_2(\mathbf{F}_7) / \{\pm 1\}$$

and their sizes.

(4) Use (1) and (3) to show that $PSL_2(\mathbf{F}_7)$ is simple.

Problem 3. Over $\overline{\mathbf{F}}_q$, for q odd, let $G = \mathrm{SL}_2$. Let B = TU be its upper-triangular subgroup, where T is the diagonal torus and U the unipotent radical of B. Let $F: G \to G$ correspond to the split \mathbf{F}_q -form, so that B, T, U are F-stable. For any character χ of T^F , viewed as a character of B^F , let $I_{\chi} = \mathrm{Ind}_{B^F}^{G_F}(\chi)$.

- (1) Taking q = 3:
 - (a) Use Bruhat to find the number of double cosets of U^F in G^F .
 - (b) For all χ , use Mackey to decompose I_{χ} into its irreducible summands as a representation of G^F . The total number of χ , times $|W^F|$, should match your answer to (a).
- (2) Repeat (2), now taking q = 5.

Problem 4. Keep the setup of the previous problem. Recall the Deligne–Lusztig variety

$$\tilde{X}_s = \{ gU \in G/U \mid g^{-1}F(g) \in U\dot{s}U \}, \quad \text{where } \dot{s} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

The *G*-action on \mathbf{A}^2 induces an isomorphism $G/U \xrightarrow{\sim} \mathbf{A}^2 \setminus \{0\}$. Show that at the level of $\mathbf{\bar{F}}_q$ -points, this isomorphism identifies \tilde{X}_s with the plane curve $xy^q - x^qy = 1$, where x, y are the standard coordinates on \mathbf{A}^2 .

Problem 5. Let q be any prime power. Over \mathbf{F}_q , let X be an algebraic variety with an action of a smooth algebraic group H. Suppose that there are Frobenius maps F on X and H such that $F(h \cdot x) = F(h) \cdot F(x)$. Show that:

(1) If *H* is *connected*, then every *F*-stable $H(\bar{\mathbf{F}}_q)$ -orbit on $X(\bar{\mathbf{F}}_q)$ has an *F*-fixed point. *Hint:* Pick a point and apply Lang's theorem.

(2) In the setting of (1), suppose that the action map

$$\begin{array}{l} H\times X \to X\times X \\ (h,x) \mapsto (h\cdot x,x) \end{array}$$

is smooth and its pullback along the diagonal $X \to X \times X$ has connected geometric fibers. Note that the fibers of this pullback are the stabilizers of the *H*-action on *X*. Deduce that there is a bijection $(X/H)^F \simeq X^F/H^F$.

(3) If H is not connected, then the conclusions to (1)–(2) fail, even when $X = \mathbf{A}^1 \setminus \{0\}$ and H acts freely.

Problem 6. Over an algebraically closed field k of characteristic not 2, let $Z \subseteq GL_2$ be the subgroup of scalar matrices, acting on the larger group by multiplication.

- (1) Compute the subring $k[\operatorname{GL}_2]^Z \subseteq k[\operatorname{GL}_2]$.
- (2) Deduce that the embedding $SL_2 \rightarrow GL_2$ descends to an isomorphism

$$\operatorname{GL}_2 /\!\!/ Z \xrightarrow{\sim} \operatorname{SL}_2 /\!\!/ \{\pm 1\}.$$

Above, $k[X /\!\!/ H] := k[X]^H$ for any algebraic variety X over k with an action of an algebraic group H.

This problem suggests why we prefer not to define an algebraic group PSL_2 distinct from PGL_2 .¹

 $[\]mathbf{2}$

¹See https://mathoverflow.net/a/16150 for further context.