
9.

Having constructed the HOMFLY-PT link polynomial from Markov traces on
the Hecke algebras of the symmetric groups, we analyze general traces from a
character-theoretic viewpoint, in the setting of general symmetric algebras. The
main reference is Chapter 7 of Geck–Pfeiffer’s book.

9.1.

Fix a commutative ring A with unity. Given any A-module E, we write E_ to
denote the module dual to E.

Fix an associative algebra H over A. Let Z.H/ denote its center. We will
always assume that A � Z.H/.

For any A-module E, an E-valued trace on H is a A-linear map � W H ! E

such that �.xy/ D �.yx/ for all x; y 2 H .

Example 9.1. Any H -module M that is free of finite rank over A defines an
A-valued trace �M called its character: �M .x/ D trA.x jM/ for all x 2 H .

Let ŒH;H� be the additive subgroup of H generated by all commutators
Œx; y� :D xy � yx. It is a Z.H/-module, hence an A-module. The quotient
H=ŒH;H� is called the cocenter of H . By construction, an A-linear map out of
H is a trace if and only if it factors through the map H ! H=ŒH;H�, which
could be called the universal trace on H .

Remark 9.2. Our ŒH;H� is not the commutator ideal of H , which some texts
denote by the same notation. The quotient of H by its commutator ideal is its
abelianization, which is usually smaller than its cocenter.

9.2.

Henceforth, we assume that H is free of finite rank as an A-module. We say that
an A-valued trace � on H is symmetrizing, and that .H; �/ forms a symmetric
algebra over A, if and only if the symmetric bilinear pairing

H ˝H ! A

.x; y/ 7! �.xy/
(9.1)

is nondegenerate. Explicitly, this means: If �x 2 H_ denotes the functional

�x.y/ D �.xy/;

then the map that sends x 7! �x is an isomorphism of modules H
�
�! H_.

For convenience, let T .H/ � H_ denote the module of A-valued traces on
H . Unwinding the definitions, we see:

Proposition 9.3. If � W H ! A is symmetrizing, then:
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(1) The pairing (9.1) descends to a nondegenerate pairing

Z.H/˝H=ŒH;H�! A:

(2) The map x 7! �x restricts to an isomorphism of modules Z.H/
�
�! T .H/.

To describe the inverse to the map in (2), let .ei/i ; .fi/i be ordered A-linear
bases for H that are dual under (9.1). This means �.eifj / equals 1 when i D j
and 0 when i ¤ j .

Proposition 9.4. For any x 2 H , we have x D
P
i �.xei/fi .

Proof. If y denotes the right-hand side, then �x.ei/ D �y.ei/ for all i , whence
�x D �y , whence x D y.

Corollary 9.5. The inverse to the map in Proposition 9.3(2) sends a trace � to
the element z� :D

P
i �.ei/fi .

Observe that for any traces �; 2 T .H/, we have

 .z�/ D
X
i

�.ei/ .fi/ D
X
i

 .fi/�.ei/ D �.z /:

This leads us to consider the symmetric bilinear pairing

.�;�/� W T .H/˝ T .H/! A

for which .�;  /� is the element above. It turns out that we have all seen an
example of this pairing before.

Example 9.6. Let � be any finite group, and take H D A� , its group algebra
over A. Let e 2 � be the identity. Then there is a symmetrizing trace � on H
defined by �.e/ D 1 and �.g/ D 0 for all g ¤ e. If .gi/i is any ordering of the
elements of � , then .g�1i /i is the dual ordered basis under (9.1). Therefore,

.�;  /� D
X
g2�

�.g/ .g�1/:

We conclude that when A is a field whose characteristic does not divide j�j, then
.�;�/� is a rescaling of the usual pairing .�;�/� on class functions on � .

9.3.

Based on the last example, we might hope that the representations of symmetric
algebras are as clean as those of finite groups. It turns out that if .�;�/� is
nondegenerate, then they are, in fact, semisimple.

In what follows, we keep A;H; � , and the dual (ordered) bases .ei/i ; .fi/i
as above. We will write the H -action on H -modules as a right action, both
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to be consistent with Geck–Pfeiffer and because we will later take H to be an
Iwahori–Hecke algebra, which previously acted on Re;1 from the right.

To start, there is a version of Weyl’s unitarization trick for symmetric algebras:
namely, Geck–Pfeiffer Lem. 7.1.10.

Proposition 9.7. For any H -modules M;M 0, there is an A-linear map

I D IM;M 0 W HomA.M;M
0/! HomH .M;M

0/:

Explicitly, I.�/.m/ D
P
i �.m � ei/ � fi for all m 2 M . Moreover, IM;M 0 is

independent of the choice of .ei/i ; .fi/i .

Proof of the first claim. We must show that for all m 2 M and x 2 H , we
have I.�/.m � x/ D I.�/.m/ � x. Let ai;j 2 A be the unique scalars such that
xei D

P
j ai;j ej for all i . By Proposition 9.4,

fjx D
X
i

�.fjxei/fi D
X
i;k

ai;k�.fj ek/fi D
X
i

ai;jfi for all j :

Therefore,X
i

�.m � xei/ � fi D
X
i;j

�.m � ej / � ai;jfi D
X
j

�.m � ej / � fjx;

as desired.

9.4.

Using the “averaging” operators IM;M 0 , it is possible to generalize much of
classical character theory from finite groups to symmetric algebras. To save time,
we will omit proofs, merely pointing out the classical parallels. Henceforth:

� We assume that A is an integral domain with field of fractions K. We set
KH D K ˝A H .
� We only consider KH -modules that have finite dimension over K.

Extending � to a K-valued trace on KH , we see that it defines a symmetrizing
trace on KH as well.

We now focus on KH . The following result, Geck–Pfeiffer Lemma 7.1.11,
generalizes Maschke’s theorem for a finite group � , since I.idV / D j�j idV for
any representation V of � .

Theorem 9.8 (Gaschütz–Ikeda). Let V be a KH -module. Then V is projective
over KH if and only if idV D I.�/ for some � 2 EndK.V /.

Schur’s lemma says that if V is a simple KH -module, then EndKH .V / is a
division algebra over K. Recall that such a module V is split over K if and
only if EndKH .V / ' K idV . The following result, combining Geck–Pfeiffer
Theorem 7.2.1 and Corollary 7.2.2, generalizes Schur orthogonality for matrix
coefficients.
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Theorem 9.9. If V is a simple KH -module split over K, then there is a (unique)
element sV such that

I.�/ D sV tr.�/ idV for all � 2 EndK.V /:

It only depends on the isomorphism class of V as a KH -module.
In particular, if V 0 is another such KH -module and � W KH ! Matn.K/,

resp. �0 W KH ! Matn0.K/ is the action on V , resp. V 0 in a fixed basis, then

X
i

�.ei/k;l�
0.fi/k0;l 0 D

(
sV V D V 0 and .k; l/ D .l 0; k0/;
0 else:

By Geck–Pfeiffer Exercise 7.4, a simple KH -module V split over K is deter-
mined by its character �V . The following result, Geck–Pfeiffer Corollary 7.2.4,
generalizes Schur orthogonality for characters.

Corollary 9.10. Let V; V 0 be simple KH -modules split over K. Then

.�V ; �V 0/� D

(
sV dim.V / V ' V 0 as KH -modules;
0 else:

In particular, sV D 1
dim.V /

P
i �V .ei/�V .fi/.

The following result, combining Geck–Pfeiffer Theorem 7.2.6 and Proposition
7.2.7, describes when KH is semisimple, and recovers Artin–Wedderburn in
this case. To state it, recall that KH is split over K if and only if every simple
KH -module is split over K.

Corollary 9.11. A simple KH -module V split over K is projective if and only if
sV ¤ 0. In particular, if H is split over K, then:

(1) The following are equivalent:
(a) KH is semisimple as an algebra.
(b) sV ¤ 0 for all simple KH -modules V .
(c) The pairing .�;�/� on T .KH/ is nondegenerate.

(2) In the situation of (1), we have

� D
X
V

1

sV
�V in T .KH/;

1 D
X
V

eV in KH; where eV D
1

sV

X
i

�V .ei/fi

and the sums run over isomorphism classes of simple KH -modules. The
eV are primitive orthogonal idempotents of KH .
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Example 9.12. Fix a finite Coxeter group W . Fix an integral domain A0 contain-
ing ZŒq�1=2�, with field of fractions K0. Take A D A0Œx˙1�, so that K D K 0.x/,
and take

H D A0 ˝Z HW .x/ D A˝ZŒx˙1� HW .x/;

where HW .x/ is the Hecke algebra of W over ZŒx˙1�. Then H has the A-linear
basis .�w/w2W . There is a symmetrizing trace � on H defined by �.�e/ D 1 and
�.�w/ D 0 for all w ¤ e. Under this trace, .�w�1/w is the ordered basis dual to
.�w/w . We deduce that for any simple KH -module V , we have

sV D
1

dim.V /

X
w

�V .�w/�V .�w�1/:

It remains to describe when KH is semisimple, and in this case, to classify its
simple modules.

9.5.

To conclude, we explain the general form of the Tits deformation theorem giving
a criterion for: (1) KHW to be semisimple, and (2) the existence of a bijection
between irreducible characters of W and characters of simple modules over
KHW . For this we need some machinery that is usually presented in the setting
of modular representation theory.

Let R.KH/ be the Grothendieck group of (finite-dimensional) KH -modules,
and let RC.KH/ � R.KH/ be the semiring of classes represented by actual,
not virtual, modules. There is a map

pK W RC.KH/! .1C tKŒt�/H

that sends ŒV � to the collection of characteristic polynomials for elements of H
acting on V :

pK.V / D .detK.1 � tx j V //x2H :

Lemma 9.13 (Brauer–Nesbitt). If the characters �V form a linearly independent
subset of T .KH/ as we run over simple KH -modules V , then pH is injective.

Lemma 9.14. If A is integrally closed, then pK factors through Maps.H;AŒt�/.

Let B be another integral domain, say with field of fractions L, and let ' W
A! B be a surjective ring homomorphism. Then we can form BH D B ˝AH

and LH D L ˝B BH . Let R.LH/;RC.LH/; pL be defined similarly to
R.KH/;RC.KH/; pK .
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Theorem 9.15. Suppose that A is integrally closed and LH is split over L.
Then there is a unique additive map d' W RC.KH/! RC.LH/ such that the
following diagram commutes:

RC.KH/ .1C tAŒt�/H

RC.LH/ .1C tLŒt�/H

pK

d' '

pL

Explicitly, if O � K is a valuation ring with maximal ideal m such that
O � A and m \ A D ker.'/,1 then there is an embedding of L into the residue
field k :D O=m. (Such valuation rings exist, by an argument that applies Zorn
to the poset of all pairs p0 � A0 � K with A0 � A and p0 prime such that
p0 \ A D ker.'/: See (5.1) in Goldschmidt’s book.) If LH is split over L, then
the map RC.LH/! RC.kH/ given by extension of scalars is an isomorphism.
The map d' above sends ŒV � to the class of the image in k of any H -stable, full
O-lattice in V , viewed as an element of RC.LH/.

Theorem 9.16 (Tits Deformation). In the setup above, suppose furthermore that
KH is split and LH is semisimple. Then:

(1) KH is also semisimple.
(2) d' induces a bijection between simple KH -modules up to isomorphism

and simple LH -modules up to isomorphism.

Example 9.17. Keep the setup of Example 9.12. Let B D A0, so that L D K 0,
and let ' W A! B be the map that sends x 7! q1=2.

If A0 is integrally closed, then so is A by Gauss’s lemma. So if A0 is integrally
closed and K 0W is split semisimple as a K 0-algebra, then Tits’s deformation
theorem applies, giving us a bijection between Irr.W / and the set of simple
KH -modules up to isomorphism.

It turns out that if W is crystallographic, then we can take K 0 D Q. If W is
merely a finite Coxeter group, then we can take K 0 to be the totally real number
field generated by the character values of all characters of W .

1Thank-you to Vlad for spotting an error here during the lecture.
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