9.

Having constructed the HOMFLY-PT link polynomial from Markov traces on
the Hecke algebras of the symmetric groups, we analyze general traces from a
character-theoretic viewpoint, in the setting of general symmetric algebras. The
main reference is Chapter 7 of Geck—Pfeiffer’s book.

9.1.

Fix a commutative ring A with unity. Given any A-module E, we write E" to
denote the module dual to E.

Fix an associative algebra H over A. Let Z(H) denote its center. We will
always assume that A C Z(H).

For any A-module E, an E-valued trace on H is a A-linearmapt: H — E
such that t(xy) = t(yx) forall x,y € H.

Example 9.1. Any H-module M that is free of finite rank over A defines an
A-valued trace yys called its character: yp(x) =tra(x | M) forall x € H.

Let [H, H] be the additive subgroup of H generated by all commutators
[x,y] := xy — yx. Itis a Z(H)-module, hence an A-module. The quotient
H/[H, H] is called the cocenter of H. By construction, an A-linear map out of
H is a trace if and only if it factors through the map H — H/[H, H], which
could be called the universal trace on H.

Remark 9.2. Our [H, H] is not the commutator ideal of H, which some texts
denote by the same notation. The quotient of H by its commutator ideal is its
abelianization, which is usually smaller than its cocenter.

9.2.

Henceforth, we assume that H is free of finite rank as an A-module. We say that
an A-valued trace T on H is symmetrizing, and that (H, t) forms a symmetric
algebra over A, if and only if the symmetric bilinear pairing

HQRH—A

O (x.7) > T(xy)

is nondegenerate. Explicitly, this means: If t, € H" denotes the functional
T (y) = t(xy),

then the map that sends x > t, is an isomorphism of modules H = HY.
For convenience, let 7 (H) € H" denote the module of A-valued traces on
H . Unwinding the definitions, we see:

Proposition 9.3. If t : H — A is symmetrizing, then:



(1) The pairing (9.1) descends to a nondegenerate pairing
Z(H)® H/|H,H] — A.

(2) The map x > ty restricts to an isomorphism of modules Z(H) N T(H).

To describe the inverse to the map in (2), let (e;);, ( f;); be ordered A-linear
bases for H that are dual under (9.1). This means (e; f;) equals 1 wheni = j
and O wheni # j.

Proposition 9.4. For any x € H, we have x =) _; t(xe;) f;.

Proof. 1f y denotes the right-hand side, then 7, (e;) = t,(e;) for all i, whence
T, = Ty, Whence x = y. ]

Corollary 9.5. The inverse to the map in Proposition 9.3(2) sends a trace y to
the element z, := Y, x(e;) f;.

Observe that for any traces y, V¥ € 7 (H), we have
V(z) =Y 2y () =Y v(fxle) = x(zy).

This leads us to consider the symmetric bilinear pairing
(=) T(H)QT(H) > A

for which (y, V). is the element above. It turns out that we have all seen an
example of this pairing before.

Example 9.6. Let I" be any finite group, and take H = AT, its group algebra
over A. Let e € I' be the identity. Then there is a symmetrizing trace T on H
defined by t(e) = 1 and 7(g) = O for all g # e. If (g;); is any ordering of the
elements of T, then (g;!); is the dual ordered basis under (9.1). Therefore,

(- =Y_ x@v(g™.

gel

We conclude that when A is a field whose characteristic does not divide |I"|, then
(—, —). is a rescaling of the usual pairing (—, —)r on class functions on I".

9.3.

Based on the last example, we might hope that the representations of symmetric
algebras are as clean as those of finite groups. It turns out that if (—, —), is
nondegenerate, then they are, in fact, semisimple.

In what follows, we keep A, H, 7, and the dual (ordered) bases (e;);, ( f;);
as above. We will write the H-action on H-modules as a right action, both



to be consistent with Geck—Pfeiffer and because we will later take H to be an
Iwahori—Hecke algebra, which previously acted on R, ; from the right.

To start, there is a version of Weyl’s unitarization trick for symmetric algebras:
namely, Geck—Pfeiffer Lem. 7.1.10.

Proposition 9.7. For any H-modules M, M’, there is an A-linear map
I = Ipp : Homy(M, M) — Hompg (M, M').

Explicitly, 1(¢p)(m) = Y, ¢p(m - ¢e;) - f; forallm € M. Moreover, Iy - is
independent of the choice of (e;)i, (f;)i-

Proof of the first claim. We must show that for all m € M and x € H, we
have I(¢)(m - x) = I(¢)(m) - x. Leta; ; € A be the unique scalars such that
xe; =) _;aj je; foralli. By Proposition 9.4,

fix =Y t(fjxe) fi =Y anxr(fier) fi = ai;fi forall j.
ik i

1

Therefore,
Y pm-xe)-fi=) dm-ej)-aijfi =) ¢p(m-e))- fix,
i ij j
as desired. [l

9.4.

Using the “averaging” operators Iz, it is possible to generalize much of
classical character theory from finite groups to symmetric algebras. To save time,
we will omit proofs, merely pointing out the classical parallels. Henceforth:

e We assume that A is an integral domain with field of fractions K. We set
KH =K ®4 H.

e We only consider K H-modules that have finite dimension over K.
Extending 7 to a K-valued trace on K H, we see that it defines a symmetrizing
trace on K H as well.

We now focus on K H. The following result, Geck—Pfeiffer Lemma 7.1.11,
generalizes Maschke’s theorem for a finite group I', since /(idy) = || idy for
any representation V' of I'.

Theorem 9.8 (Gaschiitz—lkeda). Let V be a K H-module. Then V is projective
over KH if and only ifidy = I(¢) for some ¢ € Endg (V).

Schur’s lemma says that if V' is a simple K H-module, then Endg g (V) is a
division algebra over K. Recall that such a module V is split over K if and
only if Endg g (V) >~ Kidy. The following result, combining Geck—Pfeiffer
Theorem 7.2.1 and Corollary 7.2.2, generalizes Schur orthogonality for matrix
coefficients.



Theorem 9.9. If V is a simple K H-module split over K, then there is a (unique)
element sy such that

1(¢) = sy tr(p)idy  forall ¢ € Endg(V).

It only depends on the isomorphism class of V as a K H-module.
In particular, if V' is another such K H-module and p : KH — Mat, (K),
resp. p' : KH — Mat,/(K) is the action on V, resp. V' in a fixed basis, then

sy V=V'and (k,l)= U k",
S ptead fr = D=5
- 0 else.
By Geck—Pfeiffer Exercise 7.4, a simple K H-module V split over K is deter-
mined by its character yy . The following result, Geck—Pfeiffer Corollary 7.2.4,
generalizes Schur orthogonality for characters.

Corollary 9.10. Let V, V' be simple K H-modules split over K. Then

sy dim(V) V ~ V' as KH-modules,
v, xv)e =
0 else.

In particular, sy = m Yo xvie) xv(fi).

The following result, combining Geck—Pfeiffer Theorem 7.2.6 and Proposition
7.2.7, describes when K H is semisimple, and recovers Artin—-Wedderburn in
this case. To state it, recall that K H is split over K if and only if every simple
K H-module is split over K.

Corollary 9.11. A simple K H-module V' split over K is projective if and only if
sy # 0. In particular, if H is split over K, then:

(1) The following are equivalent:

(a) KH is semisimple as an algebra.

(b) sy # O for all simple K H-modules V.

(c) The pairing (—, —). on T (K H) is nondegenerate.
(2) In the situation of (1), we have

1
T = Z;XV inT(KH),

|4

1
I:Zey in KH, whereev=§ZXV(€i)fi
174 i

and the sums run over isomorphism classes of simple K H-modules. The
ey are primitive orthogonal idempotents of K H .



Example 9.12. Fix a finite Coxeter group W. Fix an integral domain A" contain-
ing Z[g~'/?], with field of fractions K. Take A = A’[x*!], so that K = K’(x),
and take

H=A Rz HW(X) =A ®Z[xil] HW(X)’

where Hyy (x) is the Hecke algebra of W over Z[x*!]. Then H has the A-linear
basis (0 )wew . There is a symmetrizing trace T on H defined by t(0.) = 1 and
7(0yw) = 0 for all w # e. Under this trace, (0,,—1)y, is the ordered basis dual to
(0w)w- We deduce that for any simple K H-module V', we have

1
YT dim(V)

> xv(ow) xv (o).

w

It remains to describe when K H is semisimple, and in this case, to classify its
simple modules.

9.5.

To conclude, we explain the general form of the Tits deformation theorem giving
a criterion for: (1) K Hw to be semisimple, and (2) the existence of a bijection
between irreducible characters of W and characters of simple modules over
K Hy . For this we need some machinery that is usually presented in the setting
of modular representation theory.

Let R(K H) be the Grothendieck group of (finite-dimensional) K H -modules,
and let RY(KH) € R(KH) be the semiring of classes represented by actual,
not virtual, modules. There is a map

px : RY(KH) — (1 + tK[) 7

that sends [V] to the collection of characteristic polynomials for elements of H
actingon V:

px(V) = (detg (1 —tx | V))xen.

Lemma 9.13 (Brauer—Nesbitt). If the characters yy form a linearly independent
subset of T (K H) as we run over simple K H-modules V, then pg is injective.

Lemma 9.14. If A is integrally closed, then pk factors through Maps(H, A[t]).

Let B be another integral domain, say with field of fractions L, and let ¢ :
A — B be a surjective ring homomorphism. Then we can form BH = B®4 H
and LH = L ®p BH. Let R(LH), Rt (LH),pr be defined similarly to
R(KH),R*(KH),pk.



Theorem 9.15. Suppose that A is integrally closed and LH is split over L.
Then there is a unique additive map d, : RY(KH) — RY(LH) such that the
following diagram commutes:

RT(KH) 5 (1 4+t
dy ¢

RH(LH) —5 (1 +tL)¥

Explicitly, if O € K is a valuation ring with maximal ideal m such that
O 2 Aandm N A = ker(p),' then there is an embedding of L into the residue
field k := O/m. (Such valuation rings exist, by an argument that applies Zorn
to the poset of all pairs p’ € A" € K with A’ O A and p’ prime such that
p’ N A = ker(p): See (5.1) in Goldschmidt’s book.) If L H is split over L, then
the map R*(LH) — R*(kH) given by extension of scalars is an isomorphism.
The map d,, above sends [V/] to the class of the image in k of any H -stable, full
O-lattice in V, viewed as an element of R* (L H).

Theorem 9.16 (Tits Deformation). In the setup above, suppose furthermore that
K H is split and L H is semisimple. Then:

(1) KH is also semisimple.
(2) dy induces a bijection between simple K H-modules up to isomorphism
and simple L H-modules up to isomorphism.

Example 9.17. Keep the setup of Example 9.12. Let B = A’, so that L = K,
and let ¢ : A — B be the map that sends x — ¢'/2.

If A’ is integrally closed, then so is A by Gauss’s lemma. So if A’ is integrally
closed and K'W is split semisimple as a K’-algebra, then Tits’s deformation
theorem applies, giving us a bijection between Irr(W) and the set of simple
K H-modules up to isomorphism.

It turns out that if W is crystallographic, then we can take K’ = Q. If W is
merely a finite Coxeter group, then we can take K’ to be the totally real number

field generated by the character values of all characters of W.

'Thank-you to Vlad for spotting an error here during the lecture.
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