
19.

We identify the Springer resolution within the Grothendieck alteration, and
explain how to construct the Springer action of W using the functoriality of
intermediate extension. Along the way, we explain how perverse sheaves interact
with (semi)small maps. The main references are Z. Yun’s PCMI notes and
Achar’s book.1

For most of these notes, k can be any algebraically closed field. As usual, G
is a connected, smooth reductive algebraic group over k with flag variety B and
Weyl group W , and we fix a Borel pair T � B � G. Note that G being smooth
restricts the characteristic of k. We will further assume that the characteristic
is very good in the sense of Kiehl–Weissauer Definition VI.1.6, going back to
Slodowy, Simple Singularities and Simple Algebraic Groups. (Just assume that
the characteristic is sufficiently large.)

19.1.

Let g be the Lie algebra of G. The preimage of Œ0� along the map g! g �G is
called the nilpotent cone of g and denoted N . It forms a conical subvariety: i.e.,
a closed subvariety stable under the Gm-action contracting g to its origin. One
can check that its k-points are precisely the nilpotent elements of g: i.e., those
sent to nilpotent operators in any representation of g as a Lie algebra.

Let QN be the cotangent bundle of the flag variety B. Once we fix a perfect,
G-equivariant bilinear pairing h�;�i W g � g ! k, like the Killing form, the
notation is justified by the following calculation:

QN .k/ D f.B; �/ 2 B.k/ � g.k/ j � 2 .g=b/_.k/g where b D Lie.B/

D f.B; �/ j � 2 b?.k/g

' f.B; x/ j x 2 Œb.k/; b.k/�g via h�;�i

D f.B; x/ 2 B.k/ �N .k/ j x 2 b.k/g via Œb; b� D b \N :

Henceforth, we identify QN with the closed subscheme of B �N defined by the
condition x 2 b.

The calculation above suggests why this subscheme is smooth. With more
work, one can verifiy that it is reduced, hence a variety. The map

� W QN ! N

is a resolution of singularities called the Springer resolution of N . Its fibers are
known as Springer fibers.

1See also these notes by Yehao Zhou, which include several of the proofs: https://www.
math.toronto.edu/jkamnitz/seminar/perverse/YehaoNotes2.pdf.

https://www.math.toronto.edu/jkamnitz/seminar/perverse/YehaoNotes2.pdf
https://www.math.toronto.edu/jkamnitz/seminar/perverse/YehaoNotes2.pdf


2

Example 19.1. Take G D GL3. There are three nilpotent orbits in g (under the
adjoint action of G), corresponding to the Jordan normal form representatives0B@0 1

0 1

0

1CA ;
0B@0 1

0

0

1CA ;
0B@0 0

0

1CA :
The first two are called the regular/principal and subregular orbits, respectively.
If x 2 N .k/ is regular, then the Springer fiber above x is a point: For instance,
the only Borel whose Lie algebra contains the leftmost element above is the
upper-triangular subgroup. If x is subregular, then the Springer fiber above x
turns out to form two projective lines intersecting transversely at a point. Finally,
the Springer fiber above x D 0 is a copy of B, because 0 lives in the Lie algebra
of every Borel.

Springer made the remarkable discovery that W acts on the pushforward
complex ��. NQ`/ QN , even though it does not act on the fibers of � themselves, and
that every irreducible representation ofW appears in the resulting representations
ofW formed by the cohomology of Springer fibers. His original construction was
indirect, relying on a kind of harmonic analysis (viz., Artin–Schreier sheaves).

We will present a later construction due to Lusztig in “ Green Polynomials and
Singularities of Unipotent Classes”, which uses the functoriality of intermediate
extension. Actually, Springer and Lusztig stay in the setting of the Lie algebra
g, whereas we will present an analogue in the setting of the group G, where the
ingredients are related to unipotent character sheaves.

Remark 19.2. Lusztig’s action actually differs from Springer’s by a sign twist.
With care, this sign twist can be traced back to Poincaré/Verdier duality, as
explained in a paper of Achar–Henderson–Juteau–Riche that also extends the
possibilities for the coefficient rings involved.

19.2.

The preimage of Œ1� along the map G ! G �G is called the unipotent variety
of G and denoted U . Its k-points are the unipotent elements of G.k/.

By a theorem of Springer (Kiehl–Weissauer VI.3.3), the assumption that
the characteristic of k is very good implies the existence of a G-equivariant
isomorphism of varieties N �

�! U . Moreover, if we fix a Borel B � G with
unipotent radical U D ŒB; B�, and set n D Lie.U /, then we can assume that the
isomorphism restricts to a B-equivariant isomorphism u

�
�! U .

Remark 19.3. The isomorphism N �
�! U need not be unique. This is discussed

thoroughly in Kiehl–Weissauer §VI.3.



3

The preceding discussion justifies replacing the Springer resolution of N with
an isomorphic resolution � W QU ! U . (We reuse the letter �, as we will no longer
use the original map.) Explicitly,

QU.k/ D f.u; B/ 2 U.k/ � B.k/ j u 2 B.k/g:

This is a subset of (the k-points of) the Grothendieck alteration:

QG.k/ D f.g; B/ 2 G.k/ � B.k/ j g 2 B.k/g:

There is a reason that we are being more careful than usual to distinguish sets
from schemes. On schemes, we have a G-equivariant commutative diagram:

(19.1)

QU QG QGrs

U G Grs

� � � rs

i j

Recall that the right-hand square is cartesian. The left-hand square is cartesian
at the level of k-points, but actually fails to be cartesian at the level of schemes,
because QG �G U is not in fact reduced: e.g., over any point of the regular orbit
of U , its fiber is a point of multiplicity jW j, just like its fiber over any point of
a regular semisimple orbit is a W -torsor. (This seems to be an incarnation of
Poincaré–Hopf.) See Exercise 1.7.2 in Yun’s PCMI lectures.

However, it turns out that in all the sheaf-theoretic applications that interest
us, we can ignore this discrepancy: As explained in, say, the Stacks Project, the
étale site of a scheme is invariant under changes of non-reduced structure. As
the closed embedding QU ! QG �G U is G-equivariant, the analogous statement
holds for the equivariant sites in our setup.

19.3.

We previously discussed how � rs forms an étale cover with Galois group W . To
transfer information from � rs to �, we need a further geometric fact refining the
decomposition theorem.

A map p W Y ! X with Y irreducible is called semismall, resp. small, if
and only if it is proper, surjective, and satisfies dimY �X Y � dimY , resp.
< dimY . In more concrete terms, this means: The locus in X over which p
has relative dimension d forms a subscheme of codimension � 2d , resp. > 2d .
Tautologically, smallness implies semismallness. Plugging in d D 1 shows that
if p is semismall, then p is finite away from a codimension-1 locus of X . In
other words, p being semismall is a slight weakening of p being proper.

Recall that if p is finite, then pŠ D p� is perverse t-exact. If p is merely
semismall, then a similar, weaker conclusion holds, and if p is small, then the
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conclusion can be strengthened in a different way. Below, parts (1) and (2) are
respectively Theorem 3.8.4 and Proposition 3.8.7 in Achar’s book.

Theorem 19.4. Consider a map p W Y ! X of separated schemes of finite type
over a field, where Y is smooth and irreducible, and a lisse or locally constant
sheaf L on Y .

(1) If p is semismall, then p�LŒdimY � is perverse.
(2) If p is small, and finite over some dense open j W X 0 ! X , then

p�LŒdimY � ' jŠ�p
0
�.LjY 0/ŒdimY �;

where p0 W Y 0 ! X 0 is the restriction of p.

Remark 19.5. It is not true for an arbitrary perverse sheaf E on Y that if p W
Y ! X is small, then p�E is a perverse sheaf on X .2

As usual, the statements in the theorem can be generalized to equivariant
versions, whose details we omit. The relevance to Springer theory is:

Theorem 19.6. The map � W QU ! U is semismall; the map � W QG ! G is small.
(Hence, analogous statements hold for the stack quotients by G.)

The semismallness of � comes down to a dimension formula for Springer
fibers due to Steinberg and Springer. Following §1.4.3 in Yun’s PCMI notes: If
Bu � QU is the Springer fiber above u 2 U.k/, then

2 dimBu D dimN � dim Ad.G/.u/:

That is, the semismallness condition only barely holds, with the dimension
inequality satisfied by an equality along each adjoint orbit.

As for the smallness of � , the argument is a little longer, and more easily
explained in the setting of g than the setting of G. Ultimately, it relies on Jordan
decomposition to reduce from general elements of g to nilpotent elements.

Remark 19.7. As a cotangent bundle, (the complex analogue of) the Springer
resolution QU naturally forms a symplectic variety. A theorem of Kaledin states
that any proper birational map out of a smooth, symplectic, complex algebraic
variety is semismall.

19.4.

We now take k D NFq, and fix a Frobenius map F W G ! G, corresponding
to some Fq-form G1, such that B; T are F -stable and F acts trivially on W .
Everything we discussed above descends from k to k1 D Fq.

2See https://mathoverflow.net/q/72872.

https://mathoverflow.net/q/72872
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Recall the W -isotypic summands L�;1 � � rs
1;�.
NQ`/ QGrs

1
and perverse sheaves

A�;1 :D j1;Š�L�;1hdimGi discussed in previous notes. Applying Theorem 19.4(2)
and Theorem 19.6 to (19.1), we see that

�1;�. NQ`/ QG1
' j1;Š��

rs
1;�.
NQ`/ QGrs

1
:

The functoriality of j1;Š� transports the W -action on . NQ`/ QGrs
1

to an action on
��. NQ`/ QG1

. Just as the L�;1 are the isotypic summands of the former, so the A�;1
are the isotypics of the latter, up to shift-twist:

�1;�. NQ`/ QG1
hdimGi '

M
�2Irr.W /

�˝ A�;1

But by base change, together with the discussion below (19.1), we also have

�1;�. NQ`/ QU1
' i�1�1;�.

NQ`/ QG1
:

By the functoriality of i�1 , we arrive at a W -action on �1;�. NQ`/ QU1
, for which the

i�1A�;1 are the isotypics:

�1;�. NQ`/ QU1
'

M
�2Irr.W /

�˝ i�1A�;1:

We say that �1;�. NQ`/ QU1
is the (mixed, equivariant) Springer sheaf on U .

19.5.

We do not need equivariance, mixedness, or even k D NFq in the following result,
though the conclusion remains the same with these refinements.

Theorem 19.8 (Springer). Every irreducible representation of W occurs in the
cohomology of the stalks of �� NQ`: more precisely, in the top étale cohomology of
some Springer fiber.

For k D C, there is even a more elementary construction of the W -action
on the Springer sheaf, due to Slodowy and explained in Section 4 of his book
Four Lectures on Simple Groups and Singularities, that gives more: It gives a
W -action on the homotopy type of each Springer fiber.
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