Returning to symmetric groups, we present, in this lecture and the next one, two different constructions of a remarkable quotient of the Iwahori Hecke algebra of S_n , called the Temperley–Lieb algebra. The construction today will use a double-centralizer phenomenon called quantum Schur–Weyl duality.

10.1.

We start by reviewing classical Schur–Weyl duality, starting from the double centralizer theorem.

Theorem 10.1 (Double Centralizer). Let k be any field, E a finite-dimensional k-vector space, and $R \subseteq \text{End}_k(E)$ a semisimple k-subalgebra split over k. Let $R' = \text{End}_R(E)$. Then:

- (1) R' is semisimple.
- (2) We have an isomorphism of (R, R')-bimodules

$$E\simeq\bigoplus_i E_i\otimes E_i',$$

where the sum runs over all isomorphism classes of simple R-modules E_i , and at the same time, $\{V'_i\}_i$ is the set of all isomorphism classes of simple R'-modules.

If, moreover, R' is split over k, then $R \simeq \operatorname{End}_{R'}(V)$.

Proof. Since R is semisimple and split over k, we at least have

$$R \simeq \prod_{i} \operatorname{End}_{k}(E_{i}) \quad \text{as } k \text{-algebras},$$
$$E \simeq \bigoplus_{i} E_{i} \otimes \operatorname{Hom}_{R}(E_{i}, E) \quad \text{as } R \text{-modules},$$

(In each tensor product above, R only acts on the left factor.) Let $E'_i = \text{Hom}_R(E_i, E)$. Schur's lemma tells us that $\text{End}_R(E_i)$ is a simple k-algebra for all i and $\text{Hom}_R(E_j, E_i) = 0$ for all $j \neq i$. The first fact implies that $\text{End}_R(E_i)$ is simple; the second implies that

$$R' \simeq \prod_i \operatorname{End}_R(E_i) \otimes \operatorname{End}_k(E'_i)$$
 as k-algebras

So R' is semisimple. If R' is split over k, then we further have $\operatorname{End}_{R'}(E'_i) = k$ for all i. Again, Schur tells us that $\operatorname{Hom}_{R'}(E'_j, E'_i) = 0$ for all $j \neq i$, so we conclude that $\operatorname{End}_{R'}(E) \simeq \prod_i \operatorname{End}_k(E_i) \simeq R$.

10.

Fix a field k and a finite-dimensional vector space V over k. Let

$$\mathbf{U}_V = \mathbf{U}(\mathfrak{sl}(V)),$$

the universal enveloping algebra of $\mathfrak{sl}(V)$. Via the comultiplication map $\Delta = \Delta^{(2)} : U_V \to U_V \otimes U_V$ given by

$$\Delta(\xi) = \xi \otimes 1 + 1 \otimes \xi,$$

the category of finite-dimensional U_V -modules is endowed with a tensor product. In particular, U_V acts diagonally through $\Delta^{(n)}$ on any tensor power of V.

Fix an integer $n \ge 1$. Then there are commuting actions

$$U_V \cap V^{\otimes n} \cap kS_n$$

where S_n acts by permuting the copies of V in the tensor product. The k-algebra $\operatorname{End}_{kS_n}(V^{\otimes n})$ is called the *Schur algebra* and denoted $S_{V,n}$.

Theorem 10.2. If n is invertible in k, then the map $U_V \rightarrow S_{V,n}$ is surjective.

Proof. First, recall that $\mathfrak{gl}(V) = \mathfrak{sl}(V) \oplus k$, where the second factor represents scalar elements $c \in \mathfrak{gl}(V)$. The action of $\Delta^{(n)}(c)$ on $V^{\otimes n}$ is given by nc. So if n is invertible in k, then $U_V = U(\mathfrak{sl}(V))$ has the same image as $U(\mathfrak{gl}(V))$ in the Schur algebra.

Next, we observe that $S_{V,n} \simeq \text{Sym}^n(\mathfrak{gl}(V))$. So we want to show that if A is a finite-dimensional k-algebra, then $\text{Sym}^n(A)$ is generated by the image of $\Delta^{(n)} : A \to \text{Sym}^n(A)$. This is an exercise in symmetric function theory: See part (ii) of Lemma 5.18.3 in Etingof *et al.*'s book on representation theory. \Box

At the same time, recall that if n! is invertible in k, then kS_n is semisimple and split over k. Applying the double centralizer theorem to $E = V^{\otimes n}$ and $R = kS_n$, we deduce:

Corollary 10.3 (Schur–Weyl). If n! is invertible in k, then $S_{V,n}$ is semsimple and there is a bijection between:

(1) Irreducible characters $\chi \in Irr(S_n)$ such that

$$(\chi, \chi_{V^{\otimes n}})_{S_n} \neq 0.$$

(2) Isomorphism classes of simple U_V -modules M such that

$$\operatorname{Hom}_{U_V}(M, V^{\otimes n}) \neq 0.$$

Moreover, if $S_{V,n}$ is split over k, then the map $kS_n \to \operatorname{End}_{S_{V,n}}(V^{\otimes n})$ is surjective.

10.2.

It turns out that if $n > \dim(V)$, then the map $kS_N \to \operatorname{End}_{S_{V,n}}(V^{\otimes n})$ is not injective. We now focus on the case where $V = k^2$, where we can illustrate this fact more easily.

Recall from the representation theory of \mathfrak{sl}_2 that $\operatorname{Sym}^{\ell}(V)$ is a simple \mathfrak{sl}_2 module for all $\ell \ge 0$, and that the decomposition of $V^{\otimes n}$ into these modules (*i.e.*, its Clebsch–Gordan numbers) can be determined using weights. Explicitly, if we write $[\ell]_x = x^{\ell-1} + x^{\ell-3} + \cdots + x^{1-\ell}$, and define integers $c_{n,\ell}$ by

$$[2]_{x}^{n} = \sum_{\ell \ge 0} c_{n,\ell} [\ell + 1]_{x},$$

then $c_{n,\ell} = \dim \operatorname{Hom}_{\mathfrak{sl}_2}(\operatorname{Sym}^{\ell}(V), V^{\otimes n})$. So the (U_V, kS_n) -bimodule decomposition of $V^{\otimes n}$ must take the form

$$V^{\otimes n} \simeq \bigoplus_{\ell \ge 0} \operatorname{Sym}^{\ell}(V) \otimes V_{n,\ell},$$

where, for all ℓ , the kS_n -module $V_{n,\ell}$ is either zero or simple of dimension $c_{n,\ell}$, and the nonzero modules are pairwise non-isomorphic. But the definition of the $c_{n,\ell}$ shows that they vanish unless $n - \ell$ is nonnegative and even. Therefore, only $\lfloor n/2 \rfloor + 1$ of the irreducible characters of S_n can appear, whereas $|\operatorname{Irr}(S_n)|$ is the number of partitions of n, which grows much faster with n.

When $n - \ell$ is nonnegative and even, it turns out that $V_{n,\ell}$ is the irreducible representation of S_n indexed by the two-row partition $(n - \lfloor \ell/2 \rfloor, \lfloor \ell/2 \rfloor) \vdash n$. For instance, if $\ell \in \{0, 1\}$, then this partition is the trivial partition.

We continue to keep $V = k^2$. Then $U_V = k \otimes U(\mathfrak{sl}_2)$, where

$$U(\mathfrak{sl}_2) = \frac{\mathbf{Z}[h, e, f]}{\langle [e, f] = h, [h, e] = 2e, [h, f] = -2f \rangle},$$

the integral form of the universal enveloping algebra of \mathfrak{sl}_2 . We can take the elements h, e, f to represent, say,

$$h = \begin{pmatrix} 1 \\ & -1 \end{pmatrix}, \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Following Drinfeld–Jimbo, we define (the split form of) the *quantized universal* enveloping algebra of \mathfrak{sl}_2 to be the $\mathbf{Z}[x^{\pm 1}, \frac{1}{x-x^{-1}}]$ -algebra

$$U_{x}(\mathfrak{sl}_{2}) = \frac{\mathbb{Z}[x^{\pm 1}, \frac{1}{x-x^{-1}}][K^{\pm 1}, E, F]}{\left\langle [E, F] = \frac{1}{x-x^{-1}}(K-K^{-1}), KE = x^{2}EK, KF = x^{-2}FK \right\rangle}$$

Note that the base ring above looks suspiciously similar to the target ring for the HOMFLYPT link invariant. In particular, we cannot specialize this algebra to a $x \rightarrow 1$ limit directly.

Nonetheless, $U_x(\mathfrak{sl}_2)$ participates in a "quantization" of Schur–Weyl duality, where the Iwahori–Hecke algebra replaces kS_n . To simplify the discussion that follows, we set $k = \mathbf{Q}(x)$ and

$$\mathbf{U}_{V,\mathbf{x}} = k \otimes_{\mathbf{Z}[\mathbf{x}^{\pm 1}, \frac{1}{\mathbf{x} - \mathbf{x}^{-1}}]} \mathbf{U}_{\mathbf{x}}(\mathfrak{sl}_2).$$

Then the following formulas define a $U_{V,x}$ -action on $V = k^2$:

$$E \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad F \mapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad K \mapsto \begin{pmatrix} \mathsf{x} \\ \mathsf{x}^{-1} \end{pmatrix}.$$

Remarkably, the category of $U_x(\mathfrak{sl}_2)$ -modules free of finite rank over k is again endowed with a tensor product. It is induced by a deformation of the coproduct on $U(\mathfrak{sl}_2)$:

$$\Delta(E) = 1 \otimes E + E \otimes K,$$

$$\Delta(F) = K^{-1} \otimes F + F \otimes 1,$$

$$\Delta(K^{\pm 1}) = K^{\pm 1} \otimes K^{\pm 1}.$$

Note that since $E, F, K^{\pm 1}$ are already constrained by certain relations, it takes work to check that this coproduct is well-defined, let alone co-associative.

In what follows, let $kH_n = k \otimes_{\mathbb{Z}[x^{\pm 1}]} H_n$, where H_n is the Iwahori–Hecke algebra for S_n over $\mathbb{Z}[x^{\pm 1}]$. Recall that kH_n is semisimple and split over k.

Theorem 10.4 (Quantum Schur–Weyl). For $k = \mathbf{Q}(\mathbf{x})$, there is a kH_n -action on $V^{\otimes n}$ commuting with the $U_{\mathbf{x}}(\mathfrak{sl}_2)$ -action:

$$U_{\mathsf{x}}(\mathfrak{sl}_2) \curvearrowright V^{\otimes n} \curvearrowleft kH_n.$$

Moreover, the maps $U_x(\mathfrak{sl}_2) \to \operatorname{End}_{kH_n}(V^{\otimes n})$ and $kH_n \to \operatorname{End}_{U_x(\mathfrak{sl}_2)}(V^{\otimes n})$ are surjective.

Sometimes $\operatorname{End}_{kH_n}(V^{\otimes n})$ is called the *quantized Schur algebra*. The kH_n -action on $V^{\otimes n}$ can be constructed explicitly from a deformation of the kS_n -action. Namely, let $\check{\mathcal{R}} : V \otimes V$ be the linear operator given in column notation by

$$\check{\mathcal{R}} = \begin{pmatrix} x & & & \\ & x - x^{-1} & 1 & \\ & 1 & & \\ & & & x \end{pmatrix}.$$

For $1 \leq i < j \leq n$, let $\check{\mathcal{R}}^{(i,j)} : V^{\otimes n} \to V^{\otimes n}$ be defined through $\check{\mathcal{R}}$ on the *i*th and *j*th factors of the tensor product, and by the identity on all other factors. It turns out that $\check{\mathcal{R}}^{(i,j)}$ commutes with $U_x(\mathfrak{sl}_2)$. The action of kH_n on $V^{\otimes n}$ sends $\sigma_i^{-1} \mapsto \check{\mathcal{R}}^{(i,i+1)}$.

The key point is to check that these operators $\check{\mathcal{R}}^{(i,i+1)}$ satisfy the braid relations

$$\check{\mathcal{R}}^{(1,2)}\check{\mathcal{R}}^{(2,3)}\check{\mathcal{R}}^{(1,2)} = \check{\mathcal{R}}^{(2,3)}\check{\mathcal{R}}^{(1,2)}\check{\mathcal{R}}^{(2,3)}$$

This identity was discovered by way of its relative, the Yang-Baxeter equation

$$\mathcal{R}^{(1,2)}\mathcal{R}^{(1,3)}\mathcal{R}^{(2,3)} = \mathcal{R}^{(2,3)}\mathcal{R}^{(1,3)}\mathcal{R}^{(1,2)}$$

To go between the two, set $\check{\mathcal{R}} = s \circ \mathcal{R}$, where $s(v \otimes v') = v' \otimes v$.

Solutions to the Yang–Baxter equations are called *R-matrices*, and appear in the theory of quantum integrable systems. Somewhat confusingly, the *R*matrix above can also be written in terms of the action on $V^{\otimes 2}$ of an element of $U_x(\mathfrak{sl}_2) \otimes U_x(\mathfrak{sl}_2)$ called the *universal R-matrix*.¹

10.4.

Recall that if q is a prime power, then Iwahori's theorem interprets $H_n(q) := H_n/(x - q^{1/2})$ as the algebra of $GL_n(\mathbf{F}_q)$ -invariant functions on $\mathcal{B}(\mathbf{F}_q) \times \mathcal{B}(\mathbf{F}_q)$ under a suitable convolution, where $\mathcal{B}(\mathbf{F}_q)$ is the set of complete flags in \mathbf{F}_q^n .

The kH_n -module $V^{\otimes n}$ and the algebra $U_x(sl_2)$ have similar geometric interpretations. Observe that the kH_n -action on $V^{\otimes n}$ restricts to a H_n -action on $\mathcal{V}^{\otimes n}$, where $\mathcal{V} = \mathbb{Z}[x^{\pm 1}]^2$. Taking $x \to q^{1/2}$, the $H_n(q)$ -action on $\mathcal{V}^{\otimes n}(q) := \mathbb{Z}[q^{-1/2}] \otimes \mathcal{V}^{\otimes n}$ can be interpreted as a right action by convolution on the $\mathbb{Z}[q^{-1/2}]$ -module of functions on

$$\mathcal{G}_n(\mathbf{F}_q) \times \mathcal{B}(\mathbf{F}_q), \text{ where } \mathcal{G}_n(\mathbf{F}_q) = \coprod_k \mathcal{G}_{n,k}(\mathbf{F}_q)$$

and $\mathcal{G}_{n,k}$ is the Grassmannian of *k*-dimensional subspaces of \mathbf{F}_q^n from the zeroth lecture. The quantized Schur algebra admits a similar integral form, whose $x \to q^{1/2}$ limit can be interpreted in terms of functions on $\mathcal{G}_n(\mathbf{F}_q) \times \mathcal{G}_n(\mathbf{F}_q)$. The action of the latter on $\mathcal{V}^{\otimes n}$ then becomes a left action by convolution.

In fact, quantum Schur–Weyl duality and this geometric interpretation both generalize from $U_x(\mathfrak{sl}_n)$ to the infinite family of quantum groups $U_x(\mathfrak{sl}_n)$. The geometry is due to Beilinson–Lusztig–MacPherson; a more concise version is given in a paper by Grojnowski–Lusztig.

¹See Losev's note https://gauss.math.yale.edu/~il282/RT/RT13.pdf.

10.5.

We define the *Temperley–Lieb algebra* (over *k*) to be

$$kTL_n = \operatorname{End}_{U_x(\mathfrak{sl}_2)}(V^{\otimes n}).$$

Just as the map $kS_n \to \text{End}(V^{\otimes n})$ fails to be injective when $n > \dim(V)$, the map $kH_n \to kTL_n$ fails to be injective when n > 2.

Recall that the irreducible representations of S_n appearing in $V^{\otimes n}$ are those indexed by two-row partitions. The bijection between isomorphism classes of (finite-dimensional) simple kS_n -modules and irreducible characters of S_n restricts to a bijection between isomorphism classes of simple kTL_n -modules and irreducible characters of S_n indexed by two-row partitions.

Our notation suggests that kTL_n takes the form $k \otimes_{\mathbb{Z}[x^{\pm 1}]} TL_n$ for some quotient $H_n \to TL_n$. This is indeed the case, as we will discuss next time.