
10.

Returning to symmetric groups, we present, in this lecture and the next one, two
different constructions of a remarkable quotient of the Iwahori Hecke algebra
of Sn, called the Temperley–Lieb algebra. The construction today will use a
double-centralizer phenomenon called quantum Schur–Weyl duality.

10.1.

We start by reviewing classical Schur–Weyl duality, starting from the double
centralizer theorem.

Theorem 10.1 (Double Centralizer). Let k be any field, E a finite-dimensional
k-vector space, and R � Endk.E/ a semisimple k-subalgebra split over k. Let
R0 D EndR.E/. Then:

(1) R0 is semisimple.
(2) We have an isomorphism of .R;R0/-bimodules

E '
M

i

Ei ˝E
0
i ;

where the sum runs over all isomorphism classes of simple R-modules Ei ,
and at the same time, fV 0i gi is the set of all isomorphism classes of simple
R0-modules.

If, moreover, R0 is split over k, then R ' EndR0.V /.

Proof. Since R is semisimple and split over k, we at least have

R '
Y

i

Endk.Ei/ as k-algebras;

E '
M

i

Ei ˝ HomR.Ei ; E/ as R-modules;

(In each tensor product above, R only acts on the left factor.) Let E 0i D
HomR.Ei ; E/. Schur’s lemma tells us that EndR.Ei/ is a simple k-algebra
for all i and HomR.Ej ; Ei/ D 0 for all j ¤ i . The first fact implies that
EndR.Ei/ is simple; the second implies that

R0 '
Y

i

EndR.Ei/˝ Endk.E
0
i/ as k-algebras:

So R0 is semisimple. If R0 is split over k, then we further have EndR0.E
0
i/ D k

for all i . Again, Schur tells us that HomR0.E
0
j ; E

0
i/ D 0 for all j ¤ i , so we

conclude that EndR0.E/ '
Q

i Endk.Ei/ ' R.
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Fix a field k and a finite-dimensional vector space V over k. Let

UV D U.sl.V //;

the universal enveloping algebra of sl.V /. Via the comultiplication map � D
�.2/ W UV ! UV ˝ UV given by

�.�/ D � ˝ 1C 1˝ �;

the category of finite-dimensional UV -modules is endowed with a tensor product.
In particular, UV acts diagonally through �.n/ on any tensor power of V .

Fix an integer n � 1. Then there are commuting actions

UV ↷ V ˝n ↶ kSn;

where Sn acts by permuting the copies of V in the tensor product. The k-algebra
EndkSn

.V ˝n/ is called the Schur algebra and denoted SV;n.

Theorem 10.2. If n is invertible in k, then the map UV ! SV;n is surjective.

Proof. First, recall that gl.V / D sl.V /˚ k, where the second factor represents
scalar elements c 2 gl.V /. The action of �.n/.c/ on V ˝n is given by nc. So if
n is invertible in k, then UV D U.sl.V // has the same image as U.gl.V // in the
Schur algebra.

Next, we observe that SV;n ' Symn.gl.V //. So we want to show that if A
is a finite-dimensional k-algebra, then Symn.A/ is generated by the image of
�.n/ W A ! Symn.A/. This is an exercise in symmetric function theory: See
part (ii) of Lemma 5.18.3 in Etingof et al.’s book on representation theory.

At the same time, recall that if nŠ is invertible in k, then kSn is semisimple
and split over k. Applying the double centralizer theorem to E D V ˝n and
R D kSn, we deduce:

Corollary 10.3 (Schur–Weyl). If nŠ is invertible in k, then SV;n is semsimple
and there is a bijection between:

(1) Irreducible characters � 2 Irr.Sn/ such that

.�; �V˝n/Sn
¤ 0:

(2) Isomorphism classes of simple UV -modules M such that

HomUV
.M; V ˝n/ ¤ 0:

Moreover, if SV;n is split over k, then the map kSn ! EndSV;n
.V ˝n/ is surjective.
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10.2.

It turns out that if n > dim.V /, then the map kSN ! EndSV;n
.V ˝n/ is not

injective. We now focus on the case where V D k2, where we can illustrate this
fact more easily.

Recall from the representation theory of sl2 that Sym`.V / is a simple sl2-
module for all ` � 0, and that the decomposition of V ˝n into these modules (i.e.,
its Clebsch–Gordan numbers) can be determined using weights. Explicitly, if we
write Œ`�x D x`�1 C x`�3 C � � � C x1�`, and define integers cn;` by

Œ2�nx D
X
`�0

cn;`Œ`C 1�x;

then cn;` D dim Homsl2.Sym`.V /; V ˝n/. So the .UV ; kSn/-bimodule decompo-
sition of V ˝n must take the form

V ˝n
'

M
`�0

Sym`.V /˝ Vn;`;

where, for all `, the kSn-module Vn;` is either zero or simple of dimension cn;`,
and the nonzero modules are pairwise non-isomorphic. But the definition of the
cn;` shows that they vanish unless n� ` is nonnegative and even. Therefore, only
bn=2cC 1 of the irreducible characters of Sn can appear, whereas jIrr.Sn/j is the
number of partitions of n, which grows much faster with n.

When n � ` is nonnegative and even, it turns out that Vn;` is the irreducible
representation of Sn indexed by the two-row partition .n � b`=2c; b`=2c/ ` n.
For instance, if ` 2 f0; 1g, then this partition is the trivial partition.

10.3.

We continue to keep V D k2. Then UV D k ˝ U.sl2/, where

U.sl2/ D
ZŒh; e; f �

hŒe; f � D h; Œh; e� D 2e; Œh; f � D �2f i
;

the integral form of the universal enveloping algebra of sl2. We can take the
elements h; e; f to represent, say,

h D

 
1

�1

!
; e D

 
0 1

0 0

!
; f D

 
0 0

1 0

!
:

Following Drinfeld–Jimbo, we define (the split form of) the quantized universal
enveloping algebra of sl2 to be the ZŒx˙1; 1

x�x�1 �-algebra

Ux.sl2/ D
ZŒx˙1; 1

x�x�1 �ŒK
˙1; E; F ��

ŒE; F � D
1

x � x�1
.K �K�1/; KE D x2EK; KF D x�2FK

� :
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Note that the base ring above looks suspiciously similar to the target ring for the
HOMFLYPT link invariant. In particular, we cannot specialize this algebra to a
x! 1 limit directly.

Nonetheless, Ux.sl2/ participates in a “quantization” of Schur–Weyl duality,
where the Iwahori–Hecke algebra replaces kSn. To simplify the discussion that
follows, we set k D Q.x/ and

UV;x D k ˝ZŒx˙1; 1

x�x�1 � Ux.sl2/:

Then the following formulas define a UV;x-action on V D k2:

E 7!

 
1

0

!
; F 7!

 
0

1

!
; K 7!

 
x

x�1

!
:

Remarkably, the category of Ux.sl2/-modules free of finite rank over k is again
endowed with a tensor product. It is induced by a deformation of the coproduct
on U.sl2/:

�.E/ D 1˝E CE ˝K;

�.F / D K�1
˝ F C F ˝ 1;

�.K˙1/ D K˙1
˝K˙1:

Note that since E;F;K˙1 are already constrained by certain relations, it takes
work to check that this coproduct is well-defined, let alone co-associative.

In what follows, let kHn D k ˝ZŒx˙1� Hn, where Hn is the Iwahori–Hecke
algebra for Sn over ZŒx˙1�. Recall that kHn is semisimple and split over k.

Theorem 10.4 (Quantum Schur–Weyl). For k D Q.x/, there is a kHn-action on
V ˝n commuting with the Ux.sl2/-action:

Ux.sl2/↷ V ˝n ↶ kHn:

Moreover, the maps Ux.sl2/! EndkHn
.V ˝n/ and kHn ! EndUx.sl2/.V

˝n/ are
surjective.

Sometimes EndkHn
.V ˝n/ is called the quantized Schur algebra. The kHn-

action on V ˝n can be constructed explicitly from a deformation of the kSn-action.
Namely, let LR W V ˝ V be the linear operator given in column notation by

LR D

0BBB@
x

x � x�1 1

1

x

1CCCA :
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For 1 � i < j � n, let LR.i;j / W V ˝n ! V ˝n be defined through LR on the i th
and j th factors of the tensor product, and by the identity on all other factors. It
turns out that LR.i;j / commutes with Ux.sl2/. The action of kHn on V ˝n sends
��1

i 7!
LR.i;iC1/.

The key point is to check that these operators LR.i;iC1/ satisfy the braid relations

LR.1;2/ LR.2;3/ LR.1;2/
D LR.2;3/ LR.1;2/ LR.2;3/:

This identity was discovered by way of its relative, the Yang–Baxeter equation

R.1;2/R.1;3/R.2;3/
D R.2;3/R.1;3/R.1;2/:

To go between the two, set LR D s ıR, where s.v ˝ v0/ D v0 ˝ v.
Solutions to the Yang–Baxter equations are called R-matrices, and appear

in the theory of quantum integrable systems. Somewhat confusingly, the R-
matrix above can also be written in terms of the action on V ˝2 of an element of
Ux.sl2/ Ő Ux.sl2/ called the universal R-matrix.1

10.4.

Recall that if q is a prime power, then Iwahori’s theorem interprets Hn.q/ :D
Hn=.x � q1=2/ as the algebra of GLn.Fq/-invariant functions on B.Fq/ � B.Fq/

under a suitable convolution, where B.Fq/ is the set of complete flags in Fn
q .

The kHn-module V ˝n and the algebra Ux.sl2/ have similar geometric inter-
pretations. Observe that the kHn-action on V ˝n restricts to a Hn-action on
V˝n, where V D ZŒx˙1�2. Taking x ! q1=2, the Hn.q/-action on V˝n.q/ :D
ZŒq�1=2� ˝ V˝n can be interpreted as a right action by convolution on the
ZŒq�1=2�-module of functions on

Gn.Fq/ � B.Fq/; where Gn.Fq/ D
a

k

Gn;k.Fq/

and Gn;k is the Grassmannian of k-dimensional subspaces of Fn
q from the zeroth

lecture. The quantized Schur algebra admits a similar integral form, whose
x! q1=2 limit can be interpreted in terms of functions on Gn.Fq/�Gn.Fq/. The
action of the latter on V˝n then becomes a left action by convolution.

In fact, quantum Schur–Weyl duality and this geometric interpretation both
generalize from Ux.sln/ to the infinite family of quantum groups Ux.sln/. The
geometry is due to Beilinson–Lusztig–MacPherson; a more concise version is
given in a paper by Grojnowski–Lusztig.

1See Losev’s note https://gauss.math.yale.edu/~il282/RT/RT13.pdf.

https://gauss.math.yale.edu/~il282/RT/RT13.pdf
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10.5.

We define the Temperley–Lieb algebra (over k) to be

kTLn D EndUx.sl2/.V
˝n/:

Just as the map kSn ! End.V ˝n/ fails to be injective when n > dim.V /, the
map kHn ! kTLn fails to be injective when n > 2.

Recall that the irreducible representations of Sn appearing in V ˝n are those
indexed by two-row partitions. The bijection between isomorphism classes
of (finite-dimensional) simple kSn-modules and irreducible characters of Sn

restricts to a bijection between isomorphism classes of simple kTLn-modules
and irreducible characters of Sn indexed by two-row partitions.

Our notation suggests that kTLn takes the form k ˝ZŒx˙1� TLn for some
quotient Hn ! TLn. This is indeed the case, as we will discuss next time.
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