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0.1.

This course is about some uses of the variable q.
The funny thing about q is that different people throughout history used it

in descriptions of phenomena that were a priori unrelated. Then, later, it was
discovered that all these disparate roles for q did, in fact, have something to do
with each other.

0.2.

Many of us first encounter q as the order of a finite field, a prime power. We
denote the field by Fq.

When we do linear algebra over Fq, we quickly notice: The number of lines
through the origin in an n-dimensional vector space over Fq is

Œn�q :D
qn � 1

q � 1
D 1C q C � � � C qn�1:

More generally the number of k-dimensional (linear) subspaces turns out to be"
n

k

#
q

:D
Œn�qŠ

Œk�qŠŒn � k�qŠ
; where Œn�q�Š D Œn�q � � � Œ2�qŒ1�q:(0.1)

Certainly, this expression would become the binomial coefficient nŠ
kŠ.n�k/Š

if we
could treat q as an indeterminate rather than a number and send q ! 1. But that
is surprising, because there is no field F1.

This is the first of several bridges: The role of q as the order of a finite field is
related to the role of q as a deformation parameter in combinatorics.

0.3.

Let’s prove the assertion about (0.1). It will be convenient to assume the following
fact that does not involve finite fields:

Lemma 0.1. Write "
n

k

#
q

D

X
˛�0

c˛q
˛:

Then c˛ is the number of integer partitions of ˛ having at most k parts each
of size at most n � k: equivalently, Young diagrams of size ˛ that fit into an
k � .n � k/ box.

Proof sketch. Use the fact that
�
n

k

�
q

is determined for all integers n; k by these
properties:
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(1)
�
0

0

�
q
D 1.

(2)
�
n

k

�
q
D 0 when n < 0 or k < 0.

(3)
�
n

k

�
q
D
�
n

k�1

�
q
C qk

�
n�1

k

�
q
.

Let Gn;k.Fq/ be the set of k-dimensional subspaces of Fnq . The following
result was probably known to Gauss in a premodern form, and could be attributed
to Schubert. Donald Knuth seems to have discovered it on his own in 1971.

Theorem 0.2. There is a partition

Gn;k.Fq/ D
a
Y

Gn;k;Y .Fq/;

where the right-hand side runs over all Young diagrams that fit into a k� .n�k/
box. Moreover, jGn;k;Y .Fq/j D qjY j for all Young diagrams Y .

Proof. Given any k-dimensional subspace of Fnq , we can pick a basis for it, then
write the basis as a list of row vectors to get a k � n matrix with entries in Fq.
By Gaussian elimination, the matrix is equivalent under left multiplication by
GLk.Fq/ to one in reduced row-echelon form, like the one below for .n; k/ D
.10; 3/ stolen from Sara Billey1:0B@� � 0 � � � 0 � 1 0

� � 0 � � � 1 0 0 0

� � 1 0 0 0 0 0 0 0

1CA
The asterisks show how this reduced row-echelon matrix corresponds to a Young
diagram Y , whose size is the total number of asterisks. Let Gn;k;Y .Fq/ be the set
of all subspaces that produce this matrix. Then the elements of Gn;k;Y .Fq/ are
classified by the labelings of the asterisks with elements of Fq.

Note that Gn;k.Fq/ is the set of Fq-points of a projective algebraic variety Gn;k
defined over Fq called the .n; k/ Grassmannian. The pieces Gn;k;Y .Fq/ similarly
arise from algebraic varieties Gn;k;Y known as Schubert cells. The enumeration
of Gn;k;Y .Fq/ can be upgraded to an isomorphism Gn;k;Y ' AjY j.

In particular, this final statement does not involve q at all. We can lift the
isomorphism to any field. Over the complex numbers, the Euler characteristic
of any affine space is always 1. This gives a sort of topological meaning to the
q ! 1 limit of

�
n

k

�
q
.

Remark 0.3. In general, Fq-point counts need not specialize to the Euler character-
istics of corresponding complex algebraic varieties. The simplest counterexample
is any sufficiently varied family of algebraic curves over Fq of constant genus.

1See “Tutorial on Schubert Varieties and Schubert Calculus” online.
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0.4.

In this course, we will pay more attention to a close cousin of the Grassmannian
called the flag variety.

Fix an integer tuple Ek D .k1; : : : ; kl/, where 0 < k1 < � � � < kl < n. A
partial flag of type Ek in an n-dimensional vector space V is a filtration 0 � V1 �
� � � � Vl � V , where Vi is a (linear) subspace of dimension ki for all i . The
partial flags of type Ek in Fnq form the Fq-points of a projective algebraic variety
defined over Fq called the associated partial flag variety.

When Ek consists of a single integer k, the partial flag variety is the .n; k/
Grassmannian. When Ek D .1; 2; : : : ; n� 1/, we instead speak of a complete flag,
or flag for short, and the (complete) flag variety Bn.

The structure of Bn.Fq/ is analogous to that of Gn;k.Fq/. To see this, first
observe that the outer border of a Young diagram that fits in a k � .n � k/ box
forms a lattice path with n steps, k of which go upward and n � k of which
go rightward. The symmetric group Sn acts transitively on such lattice paths
by permuting the steps, and the stabilizer of any given path is isomorphic to
Sk � Sn�k. Up to choosing one of them as a “basepoint”, we can identify the
set of such Young diagrams with the coset space Sn=.Sk � Sn�k/ for a chosen
embedding Sk � Sn�k � Sn.

Theorem 0.4. There is a partition

Bn.Fq/ D
a
w2Sn

Bn;w.Fq/;

where jBn;w.Fq/j D q`.w/, and `.w/ is the number of inversions of w: that is,
pairs i < j such that w.i/ > w.j /.

The pieces Bn;w.Fq/ arise from varieties Bn;w that we again call Schubert
cells, as it turns out that Bn;w ' A`.w/.

This whole story has an analogue for the partial flag variety of any Ek, in which
we replace Sk � Sn�k with Sk1

� Sk2�k1
� � � � � Skl�kl�1

� Sn�kl
.

0.5.

One way to construct the Schubert decomposition of Bn.Fq/ involves the general
linear group GLn.Fq/. Observe that GLn.Fq/ acts transitively on flags in Fnq ,
and that the stabilizer of the standard flag is the subgroup B.Fq/ of either upper-
or lower-triangular matrices, depending on whether one uses column or row
notation for Fnq . Earlier, we used row notation, but going forward we prefer
columns.
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We obtain a bijection GLn.Fq/=B.Fq/ ' Bn.Fq/. Bruhat decomposition
shows that

GLn.Fq/ D
a
w2Sn

B.Fq/ PwB.Fq/;

where Pw 2 GLn.Fq/ is the permutation matrix corresponding tow. This suggests
that we take Bn;w.Fq/ D B.Fq/ PwB.Fq/=B.Fq/ as a definition.

To promote this to a definition of the algebraic variety Bn;w , we need to make
sense of coset spaces in a geometric, not set-theoretic, setting. It turns out to be
easier to work over the algebraic closure NFq, then recover the story on Fq-points
using so-called Frobenius maps. This will lead to the first main theme of the
course: The structure of algebraic groups that behave like GLn, and the role of
flag varieties in the representation theory of associated finite groups.

0.6.

A fancier formula for `.w/ D dimBn;w uses the fact that Sn is a Coxeter group.
For i D 1; 2; : : : ; n � 1, let si 2 Sn be the transposition of i and i C 1. Then Sn
has a Coxeter presentation

Sn D

*
s1; : : : ; sn�1

ˇ̌̌̌
ˇ̌̌ sisiC1si D siC1sisiC1;sisj D sj si for ji � j j > 1;
s2i D e

+
;

and `.w/ is the length of the shortest word in the si needed to express w.
It is helpful to picture the relations above using wiring diagrams. If we refine

the diagrams by replacing crossings with over- and under-crossings, then we
arrive at braid diagrams, which satisfy analogues of the first two relations but
not the third. In this way we arrive at the braid group

Brn D

*
�1; : : : ; �n�1

ˇ̌̌̌
ˇ �i�iC1�i D �iC1�i�iC1;�i�j D �j�i for ji � j j > 1

+
:

We have already seen that Sn is related to GLn via the map w 7! Pw. We now see
that Brn is related to Sn via the map �i 7! si . Yet there is another, independent
relationship between GLn.Fq/ and Brn.

0.7.

Given any 1-dimensional complex character � of B.Fq/, let I.�/ denote its
induction from B.Fq/ to GLn.Fq/. In particular, we can identify I.1/ with the
vector space of C-valued functions on Bn.Fq/, under the action of GLn.Fq/
where g � '.�/ D '.g�1 � �/.
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Theorem 0.5 (Iwahori). Brn acts on I.1/ through GLn.Fq/-equivariant linear
operators. The action factors through the algebra

Hn.q/ :D
CŒBrn�

h�2i � .q
1=2 � q�1=2/�i � 1 j i D 1; : : : ; n � 1i

;

and the map Hn.q/! EndCGLn.Fq/.I.1// is an algebra isomorphism.

We refer to Hn.q/ as the Iwahori–Hecke algebra, or just Hecke algebra, of
GLn.Fq/. Observe that if we could treat q as an indeterminate and send q ! 1,
then Hn.q/ would become the group ring ZSn. This motivates us to introduce

Hn.x/ :D
CŒx˙1�ŒBrn�

h�2i � .x � x�1/�i � 1 j i D 1; : : : ; n � 1i
;

a “generic” Hecke algebra.

0.8.

The 1980s saw an application ofHn.x/ in a totally different area of math: namely,
knot theory. A knot is a circle (tamely) embedded into 3-space, and a link is
a disjoint union of finitely many such circles. (Vaughan) Jones and Ocneanu
used trace functions on the algebras Hn.x/ to construct polynomial invariants of
conjugacy classes in Brn, which then give rise to invariants of knots and links
after normalization: the second main theme of the course. Here the variable x
becomes the square root of an indeterminate q, whose specialization to the prime
power q is completely explicit, yet remains magical.

Trace functions on Hn.x/, defined as CŒx˙1�-linear functions � such that
�.˛ˇ/ D �.ˇ˛/, specialize at x D 1 to class functions on Sn. Recall that
the vector space of class functions on Sn can be indexed (in several ways) by
the integer partitions of n. The direct sum of these vector spaces over all n
can be endowed with a remarkable ring structure, related to both the character
theory of the symmetric groups and to that of the groups GLn.Fq/, as well as
to the combinatorics of partitions. This ring of symmetric functions and its
q-deformation form the third theme of the course.

I hope to have several weeks left over at the end, to discuss some projects of
current research that intertwine these themes.
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