
14.

Today we introduce the equivariant constructible derived category as a black-box
formalism, like we did with étale cohomology, then review perverse sheaves in
this setting. To conclude, we survey what is still missing for us to categorify the
Iwahori–Hecke algebra.

Besides Achar, references for the constructible derived category might include
the Wikipedia page on “Six operations” and the Romanov–Williamson lecture
notes. For perverse sheaves, I recommend Williamson’s text, “An Illustrated
Guide. . . ” in addition to the book by Beilinson–Bernstein–Deligne–Gabber.

14.1.

In broad terms, a triangulated category D is a framework that lets us apply, to
purely algebraic objects, analogues of certain homotopy-theoretic operations:
mapping cones and suspensions. These operations ultimately allow us to measure
the algebraic objects, through operations known as (co)homology. However,
there may be several inequivalent ways of measuring in D. Very roughly, this is
similar to how a vector space can support many different coordinate systems at
once. The analogues of coordinate systems for triangulated categories are called
t -structures.

A t-structure on D is a pair of full subcategories D�0;D�0 � D such that
D�i :D D�0Œ�i � and D�i :D D�0Œ�i � satisfy:

(1) D�i�1 � D�i and D�iC1 � D�i .
(2) Hom.D�0;D�1/ D 0.
(3) For all K, there is an exact triangle

K 0 ! K ! K 00 ! K 0Œ1� where K 0 2 D�0 and K 00 2 D�1:

A triangulated functor D ! D0 is left, resp. right t-exact with respect to t-
structures on D and D0 if and only if it restricts to a functor D�0 ! .D0/�0, resp.
a functor D�0 ! .D0/�0. When both are true, we say that it is t -exact.

Purely formally, one checks that the inclusions D�i � D and D�i � D are
respectively left and right adjoint to additive truncation functors ��i W D! D�i

and ��i W D! D�i . The i th cohomology functor defined by the t -structure is

Hi
D ��i��i Œi � D ��i��i Œi � W D! D�0 \ D�0:

Thus exact triangles in D give rise to long exact sequences on cohomology. A
more difficult, but still purely formal, result is:

Theorem 14.1 (Beilinson–Bernstein–Deligne–Gabber). D�0 \ D�0 � D is
always an abelian category, called the heart of the t -structure.
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Notably, the proof uses the octahedral axiom. I like the exposition in Section
8 of Murayama’s notes from a course taught by Bhargav Bhatt at UMichigan.

Suppose that A is an abelian category and D is the derived category of com-
plexes of objects in A. Then there is a standard t-structure on D in which Hi is
the usual i th cohomology functor, and D�0 \ D�0 is equivalent to A.

Unfortunately, the converse is not necessarily true: If A is the heart of a
t -structure on D, then D need not be the derived category of complexes in A.

14.2.

Let k be an algebraically closed field and ` a prime invertible in k. Let X be
a scheme of finite type over k. In earlier notes, we sketched a description of
the abelian category of constructible NQ`-sheaves Shv.X/ D Shv.X; NQ`/. In
particular, we mentioned that the traditional construction of this category is very
roundabout: One actually constructs an appropriate triangulated category first,
then recovers Shv.X/ as the heart of an appropriate t -structure.

Suppose that G is a smooth algebraic group over k that acts on X . Here there
is a generalization of Shv.X/, called the category of equivariant constructible
NQ`-sheaves and denoted ShvG.X/, that roughly corresponds to replacing X

with the stack quotient ŒX=G�.1 Again, it is best defined as the heart of some
t-structure on some triangulated category, which we will call the equivariant
constructible derived category and denote by DG.X/ D DG.X; NQ`/. In what
follows, we simply list the properties of the functors

Hi
D H0

ı Œi � W DG.X/! ShvG.X/:

Of course, Hi.K/ is called the i th cohomology sheaf of K.
There are now several approaches to constructing DG.X/, surveyed in a

doctoral thesis by Vooys at the University of Calgary. The most well-known
treatment is due to Bernstein–Lunts, though much of their book works in a
topological, not algebro-geometric setting.

14.2.1.

Suppose that Y is another scheme of finite type with a G-action over k, and that
p W Y ! X is a G-equivariant morphism over k. Then p induces derived

pullbacks p�; pŠ W DG.X/! DG.Y /;

pushforwards p�; pŠ W DG.Y /! DG.X/:

These are often written with symbols L;R, which we will omit for convenience,
to indicate that they are derived. Some important special cases:

1My understanding is that ShvG.X/ should be a full subcategory of Shv.ŒX=G�/, where Shv
is defined on the stack side using the lisse-étale topology, following papers of Laszlo–Olsson.
Achar takes a different approach where the categories are equivalent by fiat: See §6.8 in his text.
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� If p is proper, then pŠ D p�.
� If p is smooth of relative dimension d , then pŠ D p�Œ2d �. A useful

principle to keep in mind is that smooth pullbacks commute with all other
sheaf operations (Achar Principle 2.2.11).

Like in classical sheaf theory, cf. Hartshorne II.1.18, we have an adjunction

Hom.p�K;L/ ' Hom.K; p�L/

functorial in K;L.
Recall that we set pt D Spec k. We always endow pt with the trivial G-action.

There is a constant object NQ` 2 ShvG.pt/, which represents the functors

Hi :D Hi
W DG.pt/! ShvG.pt/

in the sense that Hi.K/ D Hom. NQ`; KŒi �/ for all i and K 2 DG.pt/.
In terms of the unique map a W X ! pt, the constant sheaf on X is . NQ`/X D

a� NQ` 2 DG.X/, like before. The dualizing complex on X is !X D aŠ NQ` 2

DG.X/.

14.3.

We regard p� and pŠ as relative versions of ordinary and compactly-supported
G-equivariant singular cohomology, respectively, due to the following facts.

(1) If G D f1g, then

Hi.. NQ`/X/ D Hi.X/; Hi.aŠ. NQ`/X/ D Hic.X/;

where the right-hand sides denote the ordinary and compactly-supported
étale cohomology of X , respectively.

(2) If k D C and G is arbitrary, then

Hi.a�. NQ`/X/ D HiG.X
an/; Hi.aŠ. NQ`/X/ D Hic;G.X

an/;

Hi.a�!X/ D HBM;G
�i .Xan/; Hi.aŠ!X/ D HG�i.X

an/;

where the right-hand sides denote the G-equivariant ordinary (singular)
cohomology, compactly-supported cohomology, Borel–Moore homology,
and ordinary homology of the underlying complex-analytic space X an,
respectively. (This turns out to be a backwards way of defining homology
in terms of cohomology via a generalized Poincaré duality.)

(3) For any Nx W pt! X and K 2 DG.X/, let K Nx D Nx�K, the stalk of K at Nx.
Then we have

Hi.K Nx/ D Hi.K/ Nx;

(This ultimately reflects the fact that in classical sheaf theory, taking stalks
is exact, cf. Hartshorne II.1.2.)
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For a general object K 2 Shv.X/, we define the i th equivariant ordinary hyper-
cohomology HiG.X;K/ and compactly-supported hypercohomology Hic;G.X;K/
according to

HiG.X;K/ D Hi.a�K/; Hic;G.X;K/ D Hi.aŠK/:

When K D . NQ`/X , we write HiG.X; NQ`/;Hic;G.X; NQ`/ instead.

Theorem 14.2 (Base Change). Suppose that p W Y ! X is separated and we
have a cartesian square:

Y 0 Y

X 0 X

Q�

Qp p

�

Then there are base change equivalences ��pŠ ' QpŠ Q�� and � Šp� ' Qp� Q� Š. They
are functorial in p and � .

Corollary 14.3. Taking X 0 D f Nxg for some G-stable Nx 2 X.k/, we have

Hic;G.Y Nx/ ' Hi. QpŠ Q��. NQ`/Y / ' Hi.��pŠ. NQ`/Y / ' Hi.pŠ. NQ`/Y / Nx:

That is, the cohomology of the (geometric) fibers of p can be computed via the
stalks of certain cohomology sheaves.

14.3.1.

In addition to the pullbacks and pushforwards, equivariant constructible derived
categories admit a derived tensor product ˝ D ˝L and internal Hom Hom D
RHom that satisfy:

(1) Hom.. NQ`/X ; K/ D K.
(2) H0G.X;Hom.K;L// D Hom.K;L/.
(3) Local˝-Hom adjunction. Hom.K ˝ .�/; L/ ' Hom.K;Hom.�; L//.
(4) Local Verdier duality. Hom.pŠK;L/ ' p�Hom.K; pŠL/.
(5) The local projection formula. pŠ.p�K ˝ L/ ' K ˝ pŠL.

Everything above is functorial in K;L.

Remark 14.4. BBDG write RHom for the internal Hom, whereas Achar writes
RHom for the internal Hom and RHom for its �-pushforward to pt, so the
literature has conflicting notation.

By (1)–(2), we have H i
G.X;K/ D Hom.. NQ`/X ; KŒi �/ D Hom. NQ`; a�KŒi�/.

In particular, there is a graded action of H�G.pt; NQ`/ on H�G.X;K/. As a byprod-
uct, H�G.pt;�/ D H� defines a forgetful functor from DG.pt/ to the derived
category of complexes of finitely-generated H�G.pt; NQ`/-modules.
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Example 14.5. If G is finite (and discrete), then H�G.pt/ D H0G.pt/ D NQ`G. In
this case, H�G.pt;�/ W DG.pt/! D.Modfg

NQ`G
/ is an equivalence.

The projection formula implies the Künneth formula: Given Ki 2 DG.Xi/ for
i D 1; 2, we have

H�c;G.X1 �X2; K1 ⊠K2/ ' H�c;G.X1; K1/˝ H�c;G.X2; K2/;

where K1 ⊠ K2 D pr�1 K1 ˝ pr�2 K2. When k D C, and we replace the étale
topology with the analytic topology, the analogous Künneth formula with H�G in
place of H�c;G is Theorem 4.3.14 in Dimca’s Sheaves and Topology and Corollary
2.0.4 in Schürmann’s Topology of Singular Spaces and Constructible Sheaves.
We will assume that this noncompact Künneth formula extends to our étale
setting with arbitrary k.

It is useful to set D D DX :D Hom.�; !X/, so that DaŠ D a�D for the map
a W X ! pt. Note as well that if G D f1g, then DG.pt/ D D.Vect NQ`

/, and under
this identification, Dpt sends a complex of vector spaces to its (graded) dual.

Example 14.6. Verdier duality reduces to Poincaré duality when G D f1g and
X is smooth of dimension d . Indeed, for such X , we have !X D . NQ`/X Œ2d �,
from which

H�i.DptaŠ. NQ`/X/ ' H�i.a�DX. NQ`/X/ ' H�i.a�. NQ`/X Œ2d �/:

The left-hand side is Hic.X/
_ and the right-hand side is H2d�i.X/.

14.3.2.

Suppose that we have a closed embedding i W Z ! X and an open embedding
j W V ! X of finite-type subschemes of X complementary to each other. Then
there is an exact triangle of endofunctors of DG.X/:

jŠj
Š
! id! i�i

�
! jŠj

ŠŒ1�:

(Recall that i� D iŠ and j Š D j �.) Here i� and jŠ are called extension-by-zero
functors.

Example 14.7. Applying this triangle to . NQ`/X , then applying aŠ for the map
a W X ! pt, we obtain the usual long exact sequence

� � � ! H�c;G.U; NQ`/! H�c .X; NQ`/
i�

�! H�c .Z; NQ`/! H�c;G.U; NQ`/Œ1�! � � �
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14.3.3.

Lastly, we discuss functors that arise from changing G.
If H � G is a closed, smooth algebraic subgroup, then it gives rise to

a forgetful functor DG.X/ ! DH .X/ and two flavors of averaging functor
DH .X/! DG.X/. All of these functors are t -exact with respect to the standard
t -structures: See Achar §6.4.3 and Corollary 6.6.3.

If the G-action on X factors through a smooth quotient G ! G=N D: Q,
then it gives rise to an inflation functor DQ.X/ ! DG.X/ and two functors
DG.X/! DQ.X/, the latter corresponding to N -invariants and -coinvariants.

All of these functors are more cleanly understood in terms of morphisms of
quotient stacks: namely,

p W ŒX=H�! ŒX=G� and q W ŒX=G�! ŒX=Q�:

Under this viewpoint, the forgetful functor becomes pŠ, while the averaging
functors become p�; pŠŒ2 dimG=H�; the inflation functor becomes q�, while the
invariants and coinvariants become q� and qŠŒ�2 dimN�. Several adjunctions
thereby become visible. Compare Achar §6.6, 6.8.

14.4.

Suppose that G is connected reductive and X D B � B, where B is the flag
variety of G. As usual, we write W for the Weyl group. Recall that the G-orbits
on B � B are indexed by the elements of W . We write jw W Ow ! X for the
inclusion of the orbit indexed by w.

From our earlier discussions of the Hecke algebra HGF

TF .1/ ' HW .x/jx!q1=2 ,
we are led to expect that the extensions-by-zero jw;Š. NQ`/Ow

are related to the
standard basis elements hw . Actually, there are two natural settings in which we
could work with sheaves on X arising from the orbits Ow .

(I) The first is to work with the non-equivariant category D.X/, merely incor-
porating the G-action on X through the form of the sheaves jw;Š. NQ`/Ow

.
The advantage of this setting is that taking k D NFq and fixing an Fq-form
of G makes the function-sheaf dictionary available.

Let Db.X/ � D.X/ be the full subcategory of objects with cohomology
in bounded degrees. We extend the dictionary from Shv.X/ to Db.X/
simply by taking an Euler characteristic:

tK;d .x/ D
X
i

.�1/i tr.F d j Hi.K// for all x 2 X.Fqd /

when F W X ! X corresponds to an Fq-structure.
In his exposition, “Perverse Sheaves on Flag Manifolds and Kazhdan–

Lusztig Polynomials. . . ”, Riche uses this non-equivariant setup, but instead
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of taking k D NFq, he stays over C and works in the analytic topology. He
introduces an ad-hoc analogue of the function-sheaf dictionary that still
works because the sheaves are so nice.

(II) The second is to work with the equivariant category DG.X/. One advantage
of this setting is that for any Borel B � G, there are isomorphisms of
quotient stacks

ŒGn.B � B/� ' ŒBnB� ' ŒBnG=B�;

allowing us to work with other formulations of our category:

DG.B � B/ ' DB.B/ ' DB�B.G/:

The last version, in particular, will endow our sheaves with an action of
H�B�B.pt/. Using Künneth, one finds that H�B�B.pt/ ' R ˝ Rop as a
graded ring, where R D H�T .pt/ for the maximal torus T D B=ŒB;B�.
This observation relates the sheaf theory to the graded R-bimodules from
the active learning worksheet, a.k.a. Soergel bimodules.

Recall the realization of HGF

TF .1/ as a convolution algebra of functions on B �
B. Taking k D NFq in setting (I), one can check that �-pullback of K, resp.
Š-pushforward of K, corresponds to pullback of tK;d , resp. pushforward of
tK;d via integration along fibers. This suggests a sheaf-theoretic convolution �
corresponding to the function-theoretic one, given by the same formula in both
settings above. Namely, writing pri;j W B3 ! B2 for the various two-out-of-three
projection maps, we should have

K � L D pr1;3;Š.pr�1;2K ˝ pr�2;3L/:

Note that the maps pri;j are all smooth and proper, giving pr�i;j D prŠi;j and
pri;j;Š D pri;j;�.

However, we run into a problem: The elements hw do not just generate the
Hecke algebra, they span it over ZŒq˙1=2�. So we might want some kind of
Grothendieck group generated by the classes Œjw;Š. NQ`/Ow

� to be closed under
the convolution above. Unfortunately, this fails to work, because the convolution
products do not split into the desired summands. The problem is the pushforward.

14.5.

The solution is to use a different t-structure on D.X/ or DG.X/ that is better
behaved than the standard t-structure. We first explain this for G D f1g, then
generalize to the equivariant setting later.

To motivate the definition, we need the notion of a lisse k-sheaf. Recall that
when k is a finite self-injective ring, we have already defined lisse to mean “étale-
locally constant of finite type”. For o the ring of integers in a finite extension of
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NQ` with maximal ideal m, we say that a constructible o-sheaf F is lisse if and
only if its image under

Shv.X; o/! D�0.Shv.X; o=mj /
H0

��! Shv.X; o=mj /

is lisse for all j . Finally, a constructible NQ`-sheaf is lisse if and only if it arises
from some o and some lisse o-sheaf along Shv.X; o/ ! Shv.X; NQ`/. The
main caveat about lisse NQ`-sheaves is that, unlike lisse k-sheaves for k finite
self-injective, they need not trivialize in an étale open neighborhood of a given
geometric point.

For any lisse k-sheaf L on X , we define its dual to be L_ D Hom.L;kX/.
We notice that if X is smooth of dimension d , so that !X D kX Œ2d �, then

DX.LŒd �/ D DX.L/Œ�d� D L_Œd �:

Above, LŒd � and L_Œd � both occupy degree�d in the standard t -structure, which
suggests that we might look for a new t-structure in which these objects both
occupy degree 0.

For general X , the perverse t-structure (with respect to the “middle perver-
sity”) on D.X/ is the pair pD.X/�0; pD.X/�0 � D.X/ defined in terms of the
standard one by

pD.X/�0 D fK j dim supp.H�i.K// � ig;
pD.X/�0 D fK j dim supp.DH�i.K// � ig;

where supp.F/ D fx 2 X j Fx ¤ 0g. The objects of the heart are called
perverse sheaves. We write Perv.X/ D pD.X/�0 \ pD.X/�0, and write pHi in
place of Hi to indicate the i th perverse cohomology sheaf functor. The following
facts about Perv.X/ help us to picture it:

Example 14.8 (Goresky–MacPherson–Deligne). If X is smooth of dimension d ,
and L 2 Shv.X; NQ`/ is lisse, then LŒd � 2 Perv.X/.

Theorem 14.9 (BBDG). For any k-scheme X of finite type, Perv.X/ is both
artinian and noetherian. Hence every object is of finite length.

Theorem 14.10 (Beilinson). For any k-scheme X of finite type, the inclusion
Perv.X/ � D.X/ extends to a triangulated equivalence DbPerv.X/

�
�! Db.X/.

Remark 14.11. Beilinson’s theorem will not generalize to the G-equivariant
setting, even when G D Gm and X D pt. As for the theorem about finite length,
I actually do not know a reference for the equivariant generalization.
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For any k-scheme Z of finite type and (Zariski) open j W V ! Z, there is an
intermediate extension functor jŠ� W Perv.V /! Perv.Z/ defined by

jŠ�E D im.pH0.jŠE/!
pH0.j�E//:

It is the unique extension of E to Z with no subquotients supported on Z n V .

Theorem 14.12 (Goresky–MacPherson–Deligne, BBDG). In the setup above, if
E is simple, then jŠ�E is simple.

On a general k-scheme X of finite type, every simple object of Perv.X/ arises
in the form iŠjŠ�LŒd � for some closed i W Z ! X , nonempty open j W V ! Z of
dimension d , and simple lisse NQ`-sheaf L.

In practice, people abuse notation and write jŠ�E in place of iŠjŠ�E when X
is clear from context. For any smooth dense open V � Z, we write

ICZ D jŠ�. NQ`/V ŒdimV �;

and say that ICZ is the intersection cohomology complex, or IC complex, of
Z D NV in X . In particular, the hypercohomology

H�.X; ICX/

is called the intersection cohomology of X .
When k D C, the (contravariant) functor X 7! H�.X; ICX/ recovers (a coho-

mological form of) the intersection homology theory of Goresky–MacPherson,
which preceded and inspired the theory of perverse sheaves.

Theorem 14.13 (BBDG). If k D C or k D NFq and p W Y ! X is any
proper morphism of schemes of finite type over k, then there is a (generally
noncanonical) isomorphism

p�ICY D
M
i

pHi.p�ICY /Œ�i �

in D.X/. Moreover, pHi.p�ICY / is a semisimple object of Perv.X/ for all i .

14.6.

Now suppose that G is an arbitrary smooth algebraic group acting on X .
We want an analogous t -structure pDG.X/�0; pDG.X/�0 � DG.X/ such that

the heart PervG.X/ admits a forgetful functor

PervG.X/! Perv.X/:

It turns out that we can just define the equivariant version to be the pullback of
pD.X/�0; pD.X/�0 along the forgetful functor DG.X/ ! D.X/. This makes
the forgetful functor t -exact with respect to the perverse t -structures. See Achar
page 287 and Theorem 6.4.10.
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Remark 14.14. A sanity check: The definition of pD.X/�0; pD.X/�0 involves
dimension conditions on certain subschemes of X . If we tried to imitate this with
the stack ŒX=G� in place of the scheme X , then we would run into problems
with negative dimensions. The dimension conditions should really be rewritten
as codimension conditions, which don’t change when we replace all subschemes
involved with their stack quotients by G.

All of the theorems for Perv.X/ that we discussed, except Beilinson’s theorem
about DbPerv.X/, have analogues for PervG.X/. The category PervG.X/ is
described more explicitly in Achar Chapter 6.

14.7.

We return to G connected reductive and X D B � B. In either setting (I) or
setting (II) from earlier, we write

Ew :D jw;Š�. NQ`/Ow
ŒdimOw �:

Above, note that dimOw D `.w/C dimB.
We will find that via the decomposition theorem, the additive category gen-

erated by the objects Ew Œm� for varying w 2 W and m 2 Z is closed under
convolution. This suggests working with the split Grothendieck group of this
category.

The remaining problem, then, is that we still do not have an element of this
Grothendieck group that supplies either the variable x or the number q1=2. Our
earlier discussion of the function-sheaf dictionary suggests the solution: We need
input from an Fq-form of G. This leads us to study so-called mixed perverse
sheaves, whose beautiful structure is worked out in Chapter 5 of BBDG’s book.
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