
6.

Today, we discuss a big-picture overview of the consequences of Deligne–Lusztig
theory and Lusztig’s subsequent work on finite reductive groups. This is stolen
from online notes by Chao Li.

6.1.

Suppose that G is a reductive algebraic group with Frobenius F and F -stable
maximal torus T . If T is maximally split, i.e., contained in an F -stable Borel
B � G, then we can perform parabolic induction of representations from T F to
GF in the spirit of Harish-Chandra: Pull back from T F to BF , then induct from
BF to GF . We said that the resulting representations (and/or their summands)
are called the principal series. An irreducible character of GF is cuspidal if and
only if it does not occur in any principal series.

The key idea of Deligne–Lusztig—which they attribute to Macdonald—is
to obtain the other irreducible characters of GF by constructing, for all other
F -stable maximal tori S � G, an analogous induction functor from SF to GF .
What we have actually presented thus far is how to construct this functor when
SF is explicitly conjugate to T wF for some w 2 W . For such S and a choice of
g 2 G.k/ such that S D gTg�1, the virtual character that we denote by Rw;� is,
in other texts, constructed in terms of  :D g� and denoted RS; . By what we
proved earlier, any two choices for g differ by an element of GF , and hence,  
is determined by � up to conjugation by GF .

It turns out that if characters  ; 0 of SF are GF -conjugate, then RS; D
RS; 0 as class functions on GF . So above, one could take Rw;� as a definition
of RS; . However, it is also possible to construct RS; from S and  without
reference to the maximally split torus T . We may leave this to a problem set.

6.2.

Since every F -stable maximal torus S satisfies SF D T wF for some w, the
Rw;� comprise all the virtual characters that we get “geometrically” from such
tori. The next problem is to determine which ones contribute the same irreducible
summands as each other.

Last time, we stated a formula of Deligne–Lusztig implying that if w;w0 2 W
belong to different F -conjugacy classes, then Rw;� ; Rw 0� 0 are orthogonal for
every pair of characers � of T wF and � 0 of T w

0F . But we have also seen an
example where w;w0 are not F -conjugate and Rw;1; Rw 0;1 have the same virtual
summands: For G D SL2 under the standard Frobenius, Re;1 D 1 C � and
Rs;1 D 1 � � for 1 the trivial character and � the Steinberg character.

Deligne–Lusztig found a stricter condition that rules out this sort of situation.
As motivation, observe that since G.k/ D

S
m�1G

Fm

, every pair of maximal
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tori S; S 0 is conjugate under GF
m

for some m � 1. Since S is commutative,
there is a group homomorphism

Nm W SF
m

! SF ;

called the Galois norm, that sends any element to the product of its conjugates
under F 0; F 1; : : : ; Fm�1. Fix characters  of SF and  0 of .S 0/F . We say that
the pairs .S;  / and .S 0;  0/ are geometrically conjugate if and only if there
exists some m � 1 and g 2 GF

m

such that S 0 D gS and  0 ı Nm D g. ı Nm/.
What follows is Corollary 6.3 in Deligne–Lusztig’s paper.

Theorem 6.1 (Deligne–Lusztig). If RS; ; RS 0; 0 share an irreducible summand,
then .S;  / and .S 0;  0/ are geometrically conjugate.

6.3.

We also stated a formula about Lefschetz numbers, reducing the calculation of
a Lefschetz function on GF to those of other Lefschetz functions (for smaller
schemes) on the subset of unipotent elements. It turns out that this formula
reduces the calculation of RS; to the case where  D 1, at the cost of replacing
G with a collection of smaller reductive algebraic groups. For clarity in what
follows, we will write RGS . / in place of RS; .

For any g 2 GF , let g D gsgu D gugs be its Jordan decomposition. This
decomposition is uniquely determined by requiring gs to be semisimple, meaning
an element of some maximal torus of G, and gu unipotent. It turns out that
gs; gu 2 G

F as well, and that the centralizer C.gs/ D CG.gs/ is a reductive
algebraic group. Let C.gs/ı � C.gs/ be the connected component at the identity.
Observe that if gs is contained in a torus, then the torus is contained in C.gs/ı.

Theorem 6.2 (Deligne–Lusztig). For any F -stable maximal torus S and element
g 2 GF , we have

RG
F

SF . /.g/ D
1

j.C.gs/ı/F j

X
x2GF

gs2xS
F x�1

x .gs/R
.C.gs/

ı/F

xSF x�1 .1/.gu/:

This formula simplifies substantially when g D gs. In particular, when g D 1,
Deligne–Lusztig use the formula to express the dimension of any irreducible
character � of GF as a linear combination of the multiplicities .�; RG

F

SF . //GF ,
running over all F -stable maximal tori S and characters  . From this they
deduce their Corollary 7.7:

Corollary 6.3 (Deligne–Lusztig). Every irreducible representation ofGF occurs
as a virtual summand of RS; for some S; : hence, of Rw;� for some w; � .
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6.4.

From these results, we begin to glimpse how the Deligne–Lusztig induction
functors give structure to the set of irreducible characters of GF , when G is a
connected reductive algebraic group over k with Frobenius F .

(1) First, it is partitioned into subsets indexed by the geometric conjugacy
classes of pairs .S;  /, where S is an F -stable maximal torus of G and  
is a character of SF . Let SG;F denote the set of such classes.

(2) Second, the values of the characters associated with a given .S;  / can
be computed from analogous values where G is replaced by a smaller
reductive group, S is replaced by a conjugate torus, and  is replaced by
the trivial character.

Remarkably, we can repackage this structure in terms of the geometry of a
different group. For any connected reductive G with Frobenius F , there is
another connected reductive algebraic group G_ over k, and a Frobenius on G_

that we again denote by F , with the following properties.

(1) SG;F is in bijection with the set of semisimple G_.k/-conjugacy classes
of .G_/F .

(2) In (1), the (single) geometric conjugacy class of pairs .S; 1/ corresponds
to the conjugacy class of the identity element in .G_/F .

(3) The operation .G; F / 7! .G_; F / is involutive.

Granting its existence, we can state Lusztig’s classification theorem. For any
semisimple element g 2 .G_/F , whose G_.k/-conjugacy class .g/ corresponds
to a class Œ.S;  /� 2 SG;F , let E.GF ; .g// denote the set of irreducible characters
of GF with nonzero multiplicity in RS; .

Theorem 6.4 (Deligne–Lusztig, Lusztig). We have a partition

Irr.GF / D
a
.g/

E.GF ; .g//;

where .g/ runs over the semisimple G_.k/-conjugacy classes of .G_/F . More-
over, writing Hg D CG_.g/

_, so that H_g D CG_.g/, we have bijections

E.GF ; .g// ��! E.Hg ; .1//;

� 7! �u;

such that the following property holds: Writing Œ.Sg ;  g/� 2 SHg;F for the class
corresponding to the H_g .k/-conjugacy class of g in .H_g /

F , we have

.�; RS; /GF D ˙.�u; RSg; g
/HF

g
;

where the sign can be made explicit and only depends on G;S; .g/.
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We say that E.GF ; .g// is the Lusztig series indexed by .g/. Hence, when .g/
corresponds to the geometric conjugacy class of .T; �/ for a maximally split T ,
the Lusztig series for .g/ is the principal series indexed by � .

6.5.

The construction of G_ requires some background from Lie theory: the classi-
fication of reductive algebraic groups in terms of root data, due to the work of
Killing, É. Cartan, and Chevalley. Namely, we take the root datum of G_ to be
that dual to the root datum of G. It turns out that by the existence of F -stable
Borel pairs, the Frobenius on G is determined by an automorphism of its root
datum, and the Frobenius on G_ can be defined in terms of an appropriate dual
automorphism.

A simpler statement is Deligne–Lusztig Proposition 5.7 below. To state it,
let us fix compatible isomorphisms �m. NQ`/ ' . 1

m
Z/=Z for all m � 1, where

�m. NQ`/ is the set of mth roots of unity in NQ`.

Proposition 6.5 (Deligne–Lusztig). Let T � G be a maximally split F -stable
maximal torus. Then there is a bijection

SG;F
�
�! Œ.X.T /˝Q=Z/=W �F ;

where X.T / is the lattice of characters T ! Gm, on which W ⋊ hF i acts
by precomposition. If F corresponds to an Fq-form of G, then for any torus
S D gTg�1 and character  D g� , the map sends Œ.S;  /� to the image of �
under

Hom.T F
m

; NQ�` / ' X.T /˝ . 1
jF�

qm j
Z/=Z:
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