
8.

We explain how the knots and links of geometric topology are related to braid
groups, hence to the Hecke algebras of symmetric groups. The main reference is
Jones’s 1987 paper, “Hecke Algebra Representations of Braid Groups and Link
Polynomials”. Most of the diagrams in these notes are stolen from the textbook
on arXiv by Chmutov–Duzhin–Mostovoy.

8.1.

A knot, resp. link, is the image of a continuous embedding of a circle, resp.
a finite disjoint union of circles, into a fixed (topological) 3-manifold.1 Note
that finite disjoint unions of circles are the same as closed 1-manifolds. We
almost always take the 3-manifold to be R3, although we will sometimes need
the 3-sphere S3 or a thickened annulus D2 � S1.

If M;N are manifolds and u; v W N ! M are two continuous embeddings,
then an isotopy from u to v is a continuous map � W N � Œ0; 1�!M such that:

(1) �t D �.�; t / W N !M is a continuous embedding for all t .
(2) �0 D u and �1 D v.

If such an isotopy exists, then we say that u and v are isotopic. Note that it
is possible to construct examples of non-isotopic maps with the same image.
Consequently, if M1;M2 are submanifolds of M , then we say that M1 and M2

are isotopic in M if and only if we can find some N and some ui W N ! Mi

with image Mi for i D 1; 2 such that u1 and u2 are isotopic.
A link is tame if and only if it is isotopic to the image of a piecewise linear

embedding with finitely many singular points. Henceforth, we only deal with
tame knots and links, and suppress the adjective.

A knot/link diagram is a drawing of a projection of a knot/link in R3 onto a
plane, but keeping track of over- and undercrossings. Some knot diagrams:

Some link diagrams:

The simplest knot/link is the unknot:

1What mathematicians call a knot is what sailors and climbers would call a grommet.
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Roughly, knot theory is the study of how to tell whether two links are isotopic.
For instance, it turns out trefoils are not isotopic to their mirrors.

By contrast, any figure-eight knot is isotopic to its mirror.

As it turns out, there is a special trick—tricolorability—that shows why the
mirror trefoils are not isotopic. But on general links, tricolorability is too weak
of an isotopy invariant. At the other extreme, the following classical theorem
gives a completely discrete characterization of isotopy between links, but is not
directly useful in practice.

Theorem 8.1 (Reidemeister). Two links are isotopic if and only if they admit
diagrams that differ by some finite sequence of operations consisting of the
following local moves:

8.2.

What makes it difficult to apply Reidemeister’s theorem systematically is that,
within a given link diagram, the local pictures above can appear in so many
different configurations relative to each other. It would be easier if we could
impose some sort of linear order on the positions of the pictures.

In this way, we are led to study braids. Informally, a braid on n strands is like
a link, but connects n ordered inputs at one end of a box or cylinder to n ordered
outputs at the other end, without trackbacks. Below, only the red diagram depicts
a braid: specifically, on 3 strands.

Given a diagram of a braid ˇ, we can draw strands going from its outputs back to
its inputs in the same order, without any further crossings. The result is a diagram
of a link in R3, well-defined up to isotopy, which we call the link closure Ǒ of
the braid ˇ. Figure 1.4 from Jones’s paper illustrates this operation.

https://arxiv.org/abs/1103.5628
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Alternately, we can fix a point next to the braid, then require that all of the strands
wind once around it before they join to the braid inputs. This produces a diagram
of a link in the thickened annulusD2�S1, sometimes called the annular closure
of ˇ. We will denote it by ˇı, though there is no standard notation.

The following theorem is proved in Alexander’s 1923 paper “ A lemma on
systems of knotted curves”, which is roughly two pages long.

Theorem 8.2 (Alexander). Every link in R3 is isotopic to the closure of some
braid.

Proof sketch. The idea is to pick a point O inside the diagram, away from any
strands, then modify the diagram by Reidemeister moves until every component
of the link is a circle winding around O with a consistent direction. Since we
assume that the link is tame, we can reduce to the case where every component
is piecewise-linear or polygonal. When an edge of the polygon backtracks with
respect to the direction we have chosen, there is a trick that lets us replace it with
two consecutive edges in the direction we want.2

8.3.

Henceforth, we will conflate braids with their isotopy classes, as the latter form
well-behaved groups miraculously related to Hecke algebras. For any n � 1, let
the braid group on n strands be defined by the following presentation from the
zeroth lecture:

Brn D

*
�1; : : : ; �n�1

ˇ̌̌̌
ˇ �i�iC1�i D �iC1�i�iC1;�i�j D �j�i for ji � j j > 1

+
:(8.1)

The elements of Brn correspond to actual braids: �i , also called the i th simple
twist, is the following diagram:

The group law is bottom-to-top concatenation of diagrams, which is completely
described by these relations:

2See, the pictures on these slides of Manturov for BIMSA: https://bimsa.net/doc/
notes/31803.pdf

https://bimsa.net/doc/notes/31803.pdf
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For any n, we view Brn as a subgroup of BrnC1, as suggested by our notation.
This increasing sequence of groups allows us to make two crucial observations:

(1) Two braids on the same number of strands have the same annular link
closures if and only if they are conjugate. That is, ˇ; ˇ0 2 Brn satisfy
ˇı D .ˇ0/ı if and only if ˇ0 D ˛ˇ˛�1 for some ˛ 2 Brn.

(2) If ˇ has n strands, then it has the same link closure (in R3) as ˇ�n, a braid
on n strands. That is, for all ˇ 2 Brn, we have Ǒ D b̌�n.

We say that ˇ0 is related to ˇ by the first, resp. second Markov move if and
only if ˇ0 D ˛ˇ˛�1 for some ˛, resp. ˇ0 D ˇ�n with ˇ; ˇ0 2 Brn. The
following theorem, proved in Markov’s 1936 paper “Über die freie Äquivalenz
der geschlossenen Zöpfe”,3 says that these moves are as strong as Reidemeister’s:

Theorem 8.3 (Markov). For all n; n0 � 1 and ˇ 2 Brn and ˇ0 2 Brn0 , we have
Ǒ D Ǒ0 if and only if ˇ; ˇ0 differ by a finite sequence of operations consisting of

the two Markov moves.

8.4.

As before, we note the close resemblance to the Coxeter presentation of the
symmetric group on n letters:

Sn D

*
s1; : : : ; sn�1

ˇ̌̌̌
ˇ̌̌ sisiC1si D siC1sisiC1;sisj D sj si for ji � j j > 1;
s2i D e

+
;

Notably, the surjective group homomorphism Brn ! Sn that sends the simple
twist �i to the simple reflection si factors through the Iwahori–Hecke algebra of
Sn: More precisely, we have surjective ring homomorphisms

ZŒx˙1�Brn ! HSn
.x/! ZSn:

That is, we can rewrite the Hecke algebra as a quotient of ZŒx˙1�Brn:

Hn :D HSn
.x/ '

ZŒx˙1�Brn
h�2i � .x � x�1/�i � 1 j 1 � i � n � 1i

This raises the possibility of using the increasing sequence of algebras Hn to
simplify the study of the increasing sequence of groups Brn.

For instance, taking inspiration from Markov’s theorem, we might try to
construct a link invariant by defining a function fn on Brn for all n, such that:

3Available here: https://www.mathnet.ru/php/archive.phtml?wshow=

paper&jrnid=sm&paperid=5359

https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=5359
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=5359
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(A) The fn are class functions.
(B) We have fnC1.ˇ�n/ D fn.ˇ/ for all ˇ 2 Brn.

It turns out to be difficult to find a truly nontrivial yet computable family of such
functions. When the fn take values in a ring R, one option is to weaken (B) to:

(B0) We have fnC1.ˇ�n/ D cfn.ˇ/ for all ˇ 2 Brn, where c 2 R� is fixed.

Then one might try to make the fn computable through induction on n, and
correct for the repeated factors of c by multiplying the result by a further factor
at the very end. This makes (B) easier, but not (A): fn still needs to be some
interesting class function on Brn.

In general, traces of representations provide interesting class functions. The
key is that instead of constructing representations of Brn directly, we can obtain
them by pullback from Hn, and we have reason to believe that the representation
theory of Hn is simpler, being closer to that of Sn. Considerations like these led
Ocneanu, building on work of Jones, to discover the following result.

Theorem 8.4 (Jones–Ocneanu). There is a family of ZŒx˙1�-linear functions

�n W Hn ! ZŒx˙1; 1
x�x�1 �Œa

˙1�

uniquely determined for all n � 1 by these properties:

(1) �n.˛ˇ/ D �n.ˇ˛/ for all n and ˛; ˇ 2 Brn.
(2) �nC1.ˇ�˙1n / D �a�1�n.ˇ/ for all ˇ 2 Brn.
(3) �1.1/ D 1.

In short, the functions �n satisfy analogues of properties (A) and (B0), but are
defined on the algebras Hn rather than the groups Brn. In the literature, such
family of functions is called a family of Markov traces. Up to normalization, the
functions in the theorem are also known as the Jones–Ocneanu traces. Note that
the quadratic Hecke relation and property (2) together imply that

�nC1.ˇ/ D
a � a�1

x � x�1
� �n.ˇ/ for all ˇ 2 Brn

in our conventions.

Remark 8.5. (1) The correspondence �˙1n $ �a�1 is just a convention, but
turns out to simplify formulas for positive braids later.

(2) Sometimes, people prefer to normalize the Jones–Ocneanu traces so that
�nC1jHn

D �n instead. This is the convention that Jones uses in his 1987
Annals paper. Note too that our element �i corresponds to Jones’s element
q�1=2gi under x! q1=2, not to gi itself.

We define the writhe of a braid ˇ to be the sum e.ˇ/ of the exponents in any
word in the generators �i that represents ˇ. This integer only depends on ˇ, not
the word; in fact, e W Brn ! Z is a group homomorphism.
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Corollary 8.6 (Ocneanu). For any n � 1 and ˇ 2 Brn, the Laurent polynomial

P. Ǒ/ D .�a/e.ˇ/�n.ˇ/ 2 ZŒx˙1; 1
x�x�1 �Œa

˙1�

is an isotopy invariant of the link closure Ǒ, not just of the braid ˇ.

Above, P. Ǒ/ is called the reduced HOMFLY-PT polynomial of Ǒ, after its
discoverers. The “O” stands for Ocneanu. The adjective “reduced” means that
P.unknot/ D 1. In some contexts, it is important to work with an unreduced
version NP defined by

NP. Ǒ/ D
a � a�1

x � x�1
� P. Ǒ/:

Remark 8.7. In the literature, HOMFLY-PT is often written in variables a and q.
Our a is usually the same as a; our x is usually either q1=2 or q.

8.5.

The relation between Sn;Brn, and Hn generalizes to other finite Coxeter groups
W . Namely, we can always define a group BrW by an Artin–Tits presentation
analogous to (8.1), such that there are surjective ring homomorphisms

ZŒx˙1�BrW ! HW .x/! ZW:

The deep reason for this is a theorem of Brieskorn, matching the Artin–Tits group
BrW defined by generators and relations with the fundamental group of V reg=W ,
where V is the reflection representation of W over C, and V reg � V is the locus
where W acts freely.
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