
11.

Today, we define the Temperley–Lieb quotient of the Iwahori–Hecke algebra
using the Kazhdan–Lusztig basis and cell theory. There are many references
for the latter, including Geck–Pfeiffer Chapter 11, the RSME book on Soergel
bimodules, and the book by Björner–Brenti. In the last two references, their v is
our x�1.

I also like Geordie Williamson’s bachelor’s thesis. However his exposition is
based around Kazhdan–Lusztig’s basis .Cw/w , whereas we mostly discuss their
basis .C 0w/w .

11.1.

As motivation: Let A be a commutative ring with unity. Let H be an associative
A-algebra that is free over A with a fixed basis .˛w/w2W . We would like to
know: In which cases do subsets of the basis generate nontrivial two-sided ideals
of H? Such ideals give rise to nontrivial quotients of H already equipped with
an A-linear basis: namely, the images of the ˛w that are nonzero.

Let �0L be the following relation on W : For all v;w 2 W , we set v �0L w if
there exists h 2 H such that ˛v appears in the expansion of h˛w in the given
basis. In a slogan,

“we can cause ˛w to see ˛v by multiplying from the left”:

Let �L be the transitive closure of �0L.

Example 11.1. If ˛w 2 H
�, then w is a maximal element for �L. In particular,

if ˛e D 1 for some e 2 W , then e is a maximal element.

We see that a subset of the basis generates a left ideal I � H if and only if
the subset is downward-closed in �L. The following useful fact is Proposition
4.1.1 in Williamson:

Lemma 11.2. Suppose that S is a subset of W such that .˛s/s2S generates H
as an A-algebra. Then v �L w if and only if there is a sequence of elements
v D v0; v1; : : : ; v` D w in W such that, for all i , there exists s 2 S such that
˛vi

appears in the expansion of ˛s˛viC1
.

Let �L be the equivalence relation where v �L w if and only if v �L w

and w �L v both hold. We define a left cell with respect to .˛w/w to be an
equivalence class of W under �L. Tautologically, �L descends to a partial order
on the set of left cells.

The standard basis of an Iwahori–Hecke algebra fails to give an interesting
cell structure. But other bases are possible.
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Example 11.3. Take A D ZŒx˙1� and H D HW . If we set ˛w D �w , giving the
standard basis, then every basis element is invertible, so W forms a single left
cell.

Example 11.4. Take A D ZŒx˙1� and H D HW and W D S2 D f1; sg. Let
ce D �e D 1 and cs D �s C x�1 D ��1

s C x. Then

c2
s D .�s C x�1/.��1

s C x/ D x�s C 2C x�1��1
s D .xC x�1/cs:

In contrast to �2
s D .x � x�1/�s C 1, the last expression has no constant term.

That is, taking ˛w D cw gives a basis where feg and fsg are separate left cells.

We define �0R;�R;�R, and right cells in an analogous way, but using right
multiplication in place of left multiplication. We define �LR to be the transitive
closure of the relation generated by �L and �R, and define �LR similarly. We
define two-sided cells to be the equivalence classes of W under �LR. In the
last example, feg and fsg are also separate as right cells, so they form separate
two-sided cells as well.

Just as �L-downward-closed subsets of W give rise to left ideals of H , so
do �R-downward-closed, resp. �LR-downward-closed subsets give rise to right,
resp. two-sided ideals.

11.2.

It turns out that the last example generalizes. To explain how, we point out
another feature of the basis there: It is fixed under the ring anti-automorphism
D W HW ! HW defined for a general, even infinite, Coxeter group W by

D.x/ D x�1;

D.�w/ D �
�1
w�1 for all w 2 W :

In what follows, recall that S � W denotes the set of simple reflections, and
`;� denote the Bruhat length function and Bruhat partial order on W . Explicitly,
`.w/ is the minimum length among words in S that represent w. The order �
is generated from requiring that sw < w when `.sw/ D `.w/ � 1 and sw > w
when `.sw/ D `.w/C 1, for all s 2 S and w 2 W .

Theorem 11.5 (Kazhdan–Lusztig). The algebra HW admits a unique ZŒx˙1�-
linear basis fcwgw2W such that:

D.cw/ D cw ;

cw D

X
v

D.pv;w/�v

for some polynomials pv;w 2 ZŒx� satisfying:
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(1) pv;w D 0 for all v 6� w.
(2) pw;w D 1.
(3) pv;w 2 xZŒx� for all v < w.

Moreover, if v < w, then

pv;w.x/ D x`.w/�`.v/Pv;w.x�2/

for some Pv;w.q/ 2 ZŒq� such that degPv;w �
1
2
.`.w/ � `.v/ � 1/.

As preparation: For all v; y 2 W , let ry;v 2 ZŒx˙1� be defined by

D.�v/ D
X

y

ry;v�y :

Induction on `.v/ shows that the sum above is finite. In fact, ry;v D 0 when
y 6� v.

Our conventions are related to Kazhdan–Lusztig’s by x D q1=2 and �w D

x`.w/Tw and cw D C
0
w . Consequently our polynomials are related to theirs by

pv;w D x`.w/�`.v/D.Pv;w/ and ry;v D x`.v/�`.y/D.Ry;v/:

The Pv;w and Ry;v are called the Kazhdan–Lusztig P - and R-polynomials.

Proof. If the basis fcwgw exists, then we must haveX
x

D.pv;w/�x D

X
v;y

pv;wry;v�y D

X
v;y

py;wrv;y�v;(11.1)

from which D.pv;w/ D
P

y rv;ypy;w . But we know that rv;y D 0 for y 6� v,
and rv;v D 1. So we must have

D.pv;w/ � pv;w D

X
y>v

rv;ypy;w :

Conversely, any family of polynomials pv;w satisfying (11.1) and conditions
(1)–(3) will determine a basis of the kind we want.

To show its existence and uniqueness, we take these conditions as a definition
of the pv;w , and induct downward in the order < on the set of elements v < w.
At step v, the inductive hypothesis says that the right-hand side (D: r:h:s:) of
(11.1) is fixed. If we could show D.r:h:s:/ D �r:h:s:, then r:h:s: would take the
form D.pv;w/ � pv;w for a unique pv;w 2 xZŒx�, completing the induction. We
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compute

D

 X
y>v

rv;ypy;w

!
D

X
y>v

D.rv;y/D.py;w/

D

X
y>v

D.rv;y/
X
z�y

ry;zpz;w by the induct. hyp.

D

X
y;z

z�y�v

D.rv;y/ry;zpz;w �

X
z�v

rv;zpz;w :(11.2)

Observe that �z D D
2.�z/ D

P
v�y�z D.ry;z/rv;y�v. Therefore,

X
y

v�y�z

D.rv;y/ry;z D

X
y

rv;yD.ry;z/ D

(
1 v D z;

0 v ¤ z:

Therefore (11.2) simplifies to �
P

z>v rv;zpz;w as desired.

Remark 11.6. The story above can be generalized from ZŒx˙1� and W to other
rings A and (ranked) posets ƒ equipped with an involution on the free A-module
generated by ƒ. See Proudfoot’s article, “The Algebraic Geometry of Kazhdan–
Lusztig–Stanley Polynomials”.

11.3.

The basis .cw/w is called the Kazhdan–Lusztig basis of HW . For W D S2 and
W D S3, the polynomials Pv;w are all 0 or 1, but for general W , they become
much more chaotic.1 The first nontrivial Kazhdan–Lusztig P -polynomials occur
for W D S4: e.g.,

Ps1;s2s1s3s2
.q/ D Ps1s3;s1s2s3s2s1

.q/ D 1C q:

(This also implies the nontriviality of Pv;s2s1s3s2
; Pv;s1s2s3s2s1

for lower v in the
Bruhat order.) So in general it is difficult to compute the Pv;w , meaning it is
difficult to compute the Kazhdan–Lusztig basis as well.

But to calculate the left cells with respect to the Kazhdan–Lusztig basis, we
need to know their products. By Lemma 11.2, it suffices to compute the products
cscw for s 2 S and c 2 W . Note that cs D �s C x�1 for all s.

Following Kazhdan–Lusztig, we will write v � w if and only if v < w and
degPv;w D

1
2
.`.w/ � `.v/ � 1/. In this case, we set �.v;w/ to be the leading

coefficient of Pv;w . The following is Theorem 3.6.1 in Williamson:

1See the tables on Mark Goresky’s website: https://www.math.ias.edu/

~goresky/preprints.html

https://www.math.ias.edu/~goresky/preprints.html
https://www.math.ias.edu/~goresky/preprints.html
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Theorem 11.7. For any s 2 S and w 2 W , we have

�scw D

(
xcw sw < w;

csw � x�1cw C
P

v�w
sv<v

�.v;w/cv sw > w:

Equivalently,

cscw D

(
.xC x�1/cw sw < w

csw C
P

v�w
sv<v

�.v;w/cv sw > w

Example 11.8. Take W D S3 and write S D fs; tg for convenience. Since the
P -polynomials are trivial in this setting, we have v � w if and only if v < w

and `.w/ � `.v/ 2 f1; 2g. We obtain the following tables of products �scw :

ce cs ct

�s cs � x�1 xcs cst � x�1ct

�t ct � x�1 cts � x�1cs xct

cst cts csts

�s xcst csts � x�1cts C cs xcsts

�t csts � x�1cst C ct xcst xcsts

Equivalently:

ce cs ct

cs cs .xC x�1/cs cst

ct ct cts .xC x�1/ct

cst cts csts

cs .xC x�1/cst csts C cs .xC x�1/csts

ct csts C ct .xC x�1/cst .xC x�1/csts

We deduce that the left cells of S3 are:

feg; fs; tsg; ft; stg; fstsg:

In a similar way, one checks that the right cells are

feg; fs; stg; ft; tsg; fstsg:

Thus the two-sided cells are feg; fs; t; st; tsg; fstsg.
The union of the second and third two-sided cells generates a two-sided ideal

of HW . The corresponding quotient ring is ZŒx˙1�. The third two-sided cell
generates a smaller, principal two-sided ideal. The corresponding quotient is a
little more interesting.
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11.4.

Below we state some facts about the left, right, and two-sided cells for the
Kazhdan–Lusztig basis. For the proofs, we refer to Björner–Brenti.

(1) feg and fwıg always form two-sided cells, where wı 2 W denotes the
unique longest element with respect to Bruhat length.

(2) The elements w of a left cell have the same right descent sets fs 2 S j
ws < wg with respect to the Bruhat order. That is, the set of elements with
a fixed right descent set is a union of left cells. Analogous statements hold
with the words left and right reversed.

(3) The set of elements w 2 Sn for which there exist indices 1 � i < j <

k � n such that w.i/ > w.j / > w.k/ is a �LR-downward-closed subset
of W D Sn for the Kazhdan–Lusztig basis. Note that this condition is
equivalent to the existence of a word for w, with respect to the standard
generating set S D fsi j 1 � i � n � 1g, that contains a subword of the
form sisiC1si for some i .

We say that w is fully commutative, or 321-avoiding, if and only if these
properties do not hold. For instance, in S3, the only element that is not
321-avoiding is s1s2s1, corresponding to the permutation .321/ itself.

Kazhdan–Lusztig’s original motivation to study cells was to construct interesting
HW -modules with explicit bases, via quotients of the form I�C=I<C , where C
is a fixed left cell, I�C is the ideal generated by C and all left cells below it,
and I<C is the subideal generated by left cells strictly below C . This forms an
HW -module called the left cell module generated by C . It turns out that when
W D Sn, all simple HW -modules arise this way.

Something that is still mysterious here is why the involution D should have
anything to do with a ZŒx˙1�-basis of HW producing interesting cells.

11.5.

We define the Temperley–Lieb algebra TLn over ZŒx˙1� to be the algebra gener-
ated by elements e1; : : : ; en�1 subject to these relations:

eieiC1ei D eiei�1ei D ei ;

eiej D ej ei for ji � j j > 1;

e2
i D .xC x�1/ei :

Set Hn D HSn
as usual; also, set �i D �si

and ci D csi
. What follows is part of

Corollary 3.11 from a bachelor’s thesis at the University of Amsterdam by Tim
Weelinck.

Theorem 11.9 (Jones). There is a surjective homomorphism of ZŒx˙1�-algebras
Hn ! TLn that sends ci 7! ei for all i .
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Theorem 11.10 (Fan–Green). The kernel of Jones’s homomorphism is generated
by the elements cw where w 2 Sn is not 321-avoiding.

The key point is that the relations eieiC1ei D eiei�1ei D ei come from the
braid relations. The braid relations on the generators �i 2 Hn can be rewritten in
terms of the Kazhdan–Lusztig elements ci as

ciciC1ci � ci D ciC1ciciC1 � ciC1:

Using our calculations for S3, we can check that

csi siC1si
D ciciC1ci � ci :

In the Temperley–Lieb quotient, the right-hand side becomes eieiC1ei �ei , while
the left-hand side vanishes.

Let Sfc
n � Sn be the subset of 321-avoiding elements. For all w 2 Sfc

n , let
ew 2 TLn be the image of cw 2 Hn. We deduce:

Corollary 11.11. .ew/w2S
fc
n

is a ZŒx˙1�-linear basis for TLn.

In the notation of the previous lecture, kTLn ' k˝ZŒx˙1� TLn, meaning TLn

really is an integral form of kTLn.

11.6.

One more mystery for now: Consider the ring automorphism � W HW ! HW

defined for general W by

�.x/ D �x�1;

�.�w/ D �w :

Then we can check that �D D D�. Therefore, .�.cw//w is another D-invariant
basis of HW , which turns out to be different from .cw/w . This is the basis
denoted .Cw/w in Kazhdan–Lusztig’s conventions.

This means there are two distinct surjective ZŒx˙1�-algebra homomorphisms
from Hn to TLn. For w 2 Sfc

n , one sends cw 7! ew , while the other sends
�.cw/ 7! �ew .

Jones did not work withHn initially, but with TLn, which had been discovered
earlier in the context of statistical mechanics(!), and which Jones had studied in
the context of von Neumann algebras. He introduced traces on the Temperley–
Lieb algebras that gave rise to the link invariant now called the Jones polynomial.
Later, when the HOMFLYPT polynomial was discovered, it was observed that
Ocneanu’s Markov trace on Hn was a refinement of Jones’s trace on TLn.

But the two distinct ways to express TLn as a quotient of Hn leads to two
distinct traces on TLn that are specializations of the same trace on Hn.


	11. 
	11.1. 
	11.2. 
	11.3. 
	11.4. 
	11.5. 
	11.6. 


