
20.

Following Webster–Williamson’s paper “The Geometry of Markov Traces”,
I explain how unipotent character sheaves give rise to an algebro-geometric
interpretation of the weights of Jones–Ocneanu’s HOMFLYPT Markov traces.
In fact, they suggest an analogous trace �W for any W , first discovered by Y.
Gomi and defined in terms of numbers coming from Deligne–Lusztig theory.

20.1.

We keep the usual choices of k; k1; G; F;B; W , with F acting trivially on W .
Recall the Hecke category HW D Kb.CW /, where CW is the full additive sub-
category of DG1.B1 � B1/ generated by the (pure) objects Ew;1hmi for w 2 W
and m 2 Z. Recall also MG , the full additive subcategory of DG1.G1/ generated
by the objects E1hmi for mixed objects E1 2 PervG1.G1/ and m 2 Z. The
character functor

CH1 :D �1;Šact�1 D �1;�act�1; defined via B � B act
 � G � B �

�! G;

restricts to a functor from CW into MG . Recall that we set NKw;1 D CH1.Ew;1/.
Thus CH1 sends a general object of HW to a complex up to homotopy whose
terms are direct sums of objects NKw;1hmi.

We described a functor HHH W HW ! Vec3-gr
NQ`

, and a theorem of Webster–
Williamson interpreting it as a composition

HHH W HW
grW

� H�
G.G�B;act�.�//

�������������! Kb.Vect2-gr
NQ`
/

H�

�! Vect3-gr
NQ`
;

where W�� is the weight filtration defined via the action of Frobenius on hyper-
cohomology. We can rewrite the first arrow in terms of CH1, since

H�G.G � B; act�.�// D H�G.G;CH.�//:

So in trying to compute the first arrow, we are led to compute grW
� H�G.G; NKw/

for all w.
Lusztig gave us a formula, relating the multiplicities of the unipotent character

sheaves A�;1 in the perverse cohomology sheaves pHi. NKw;1/ to multiplicities
that essentially appear in Deligne–Lusztig theory. A priori, this is not enough:
Outside of the cases where W D Sn, the perverse sheaves pHi. NKw;1/ have
Jordan–Hölder factors not of the form A�;1hmi, a.k.a. cuspidal factors. However,
we are saved by Proposition 8 in Webster–Williamson, derived from a non-
equivariant analogue proved by Lusztig:

Theorem 20.1 (Lusztig, Webster–Williamson). If E is a cuspidal (equivariant)
unipotent character sheaf, then H�G.G;E/ ' 0.
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We have, in fact, already computed grW
� H�G.G;A�;1/ for all � 2 Irr.W /: We

have seen that the smallness of the Grothendieck alteration �1 W QG1 ! G1

implies that

NKe;1 D �1;�. NQ`/ QG1 D
M
�

�˝ A�;1;

and we computed that

grW
iCj HjG.G; NKe/ ' Hj�i.T; NQ`/˝ HiT .T; NQ`/

for a fixed F -stable maximal torus T � G with split k1-form. It will be
convenient to set V D X�.T /˝ NQ`, so that:

�
V�
.V / ' H�.T; NQ`/.

� Sym�.V / ' H2�T .T; NQ`/. Here, the superscripts mean that degree j on the
left corresponds to degree 2j on the right.

All these isomorphisms turn out to be W -equivariant. Hence we obtain

grW
2iCj HjG.G;A�/ ' .

Vj�2i
.V /˝ Symi.V //Œ��;

where as usual, Œ�� means we take the �-isotypic component of a representation.

20.2.

We can make the right-hand side more explicit using generating functions. First,
for any linear operator w on a vector space V , we have the identities:X

i�0

.�z/i tr.w j
Vi
.V // D det.1 � zw j V /;

X
i�0

zi tr.w j Symi.V // D
1

det.1 � zw j V /
:

(These identities may look familiar if you have studied symmetric functions
from the books of Macdonald or Stanley, or if you have studied the comparison
between Weil and Kapranov zeta functions.) So we have

.�;
V
.V /˝ Sym.V //W;y;z :D

X
l;i

ylzi dim
h
.
Vl
.V /˝ Symi.V //Œ��

i
D

1

jW j

X
w2W

�.w�1/ det.1 � yw j V /
det.1 � zw j V /

:

The y! 0 specialization of this formal series is known as the Molien series. We
denote it by .�;Sym.V //W;z. For instance, taking � to be the trivial character
1 D 1W gives

.1;Sym.V //W;z D
X
i�0

zi dim .Symi.V //W :
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Chevalley proved that the ring of invariants QŒV �W is a polynomial ring, freely
generated by r elements of homogeneous degree, where r D dimV . Their
degrees are called the fundamental degrees of the W -action on V . Writing these
degrees as d1; : : : ; dr , we have

.1;Sym.V //W;z D
1

.1 � zd1/ � � � .1 � zdr /
:

More generally, for any �, it turns out that

.�;Sym.V //W;z D
f�.z/

.1 � zd1/ � � � .1 � zdr /
:

for some polynomial f�.z/ 2 ZŒz� known as the fake degree of �. (See §2.5–2.6
in Springer’s paper “Regular Elements of Finite Reflection Groups”.)

Example 20.2. If W D Sn, then the irreducible characters of W correspond to
integer partitions � ` n. Write �� for the character corresponding to �, and set
f� D f�� . In the convention where �.n/ is the trivial character and �.1

n/ is the
sign character, we have

f.n/.z/ D 1 for all n;

f.1n/.z/ D z.
n
2/ for all n;

f.2;1/.z/ D zC z2:

The fake degrees for n D 4 are given in Problem Set 4.

20.3.

Recall the multiplicity formula of Lusztig stated earlier:X
j

.�1/j .ŒpHj . NKw;1/� W ŒA�;1�/x D
X

 2Irr.W /

.R ; ��/ x.cw/;

where .cw/w is the Kazhdan–Lusztig basis of HW .x/ and:

� R� D
1
jW j

P
w2W �.w/Rw , a rational linear combination of Deligne–

Lusztig virtual characters.
� �� is the unipotent principal series character attached to �.
�  x W HW .x/! Q.x/ is the (ZŒx˙1�-linear) deformation of  W ZW ! Q.

Using this formula and Theorem 20.1, we deduce:X
j

.�1/j ylzi dim gr4iCl H2iClG .G; pHj . NKw//(20.1)

D

X
 

.R ; ��/GF x.cw/.�;
V
.V /˝ Sym.V //W;y;z:
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Recall that the left-hand side of (20.1) is a decategorification of HHH.Ew;1/
(where Ew;1, as an object of HW , is placed in degree zero). The class ŒEw;1� 2
ŒCW �˚ corresponds to the Kazhdan–Lusztig element cw 2 HW .x/. So replacing
NKw with other objects of HW on the left corresponds to replacing cw with other

elements of HW .x/ on the right.
For W D Sn, several further things happen. First, a result from Lusztig’s

Characters of Reductive Groups over a Finite Field :

Theorem 20.3 (Lusztig). In the type-A cases where W D Sn, we have

.R ; ��/GF D

(
1  D �;

0  ¤ �:

At the same time, when W D Sn, the left-hand side of (20.1) should recover
the value of the HOMFLYPT Markov trace �n on cw , up to certain grading shifts
and substitutions transforming the variables y; z to the HOMFLYPT variables a; x.
Therefore, the right-hand side must be expressing how the trace �n decomposes
into the traces  x.

20.4.

To sum up: Since HHH categorifies the Markov trace, its decomposition into
unipotent character sheaves (after certain semisimplications) specializes to the
decomposition of the Markov trace into irreducible characters of HW .x/.

These weights were first calculated by Jones–Ocneanu, who expressed them
via combinatorial formulas involving Young diagrams. The Lie-theoretic form
on the right-hand side of (20.1) was discovered by Yashushi Gomi, who showed
purely algebraically(!), case by case, that it still obeys an inductive rule analogous
to that for the Markov traces �n. Gomi suggested that for general G, the right-
hand side of (20.1) be understood as a canonical generalization of the traces �n
to other Weyl groups.

For general G, it turns out that the multiplicities .R ; ��/ form entries within
a certain square matrix, describing how to transform the almost-characters R 
into all unipotent irreducible characters, not just the principal series. This matrix
is sometimes called Lusztig’s exotic or nonabelian Fourier matrix, as Lusztig
found a way to write it in terms of Fourier transforms on the “2-class functions”
of certain finite groups smaller than W .1 These matrices obey a numerology
that suggests how to generalize them from finite Weyl groups to arbitrary finite
Coxeter groups.

1For more, I recommend various notes by Iordan Ganev: e.g., https://ivganev.
github.io/math/files/grps-Lie-type.pdf.

https://ivganev.github.io/math/files/grps-Lie-type.pdf
https://ivganev.github.io/math/files/grps-Lie-type.pdf
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