
18.

Today we discuss how to geometrize the cocenters of the Iwahori–Hecke algebras
HW .x/ using the so-called horocycle correspondence. In doing so, we introduce
the Grothendieck–Springer simultaneous resolution and unipotent character
sheaves.

18.1.

Recall a result that we stated some time ago: If K D K 0.x/, where K 0 � Q is a
splitting field for W , and we write KHW D K ˝ZŒx˙1� HW .x/, then there is an
isomorphism of K-algebras KW ' KHW . In general, it does not take w 2 W
to the standard element �w , or even to the Kazhdan–Lusztig element cw , but to
something stranger. It induces an isomorphism of cocenter maps:

KW KHW

KW=ŒKW;KW � KHW =ŒKHW ; KHW �

�

�

Recall that the K-linear dual of KW=ŒKW;KW � is the space of (K-valued)
traces on KW , which is freely spanned by the irreducible characters of W . So
the dimension of KW=ŒKW;KW �, which is also that of KHW =ŒKHW ; KHW �,
equals the number of such characters.

So if we want a geometric interpretation of the cocenter of KHW , or rather,
HW .x/, then we might seek to relate our geometric interpretation of HW .x/ to
representations of W .

18.2.

Take k D NFq and G;F;B as usual: in particular, so that G is connected, smooth,
and reductive. We assume that W is the Weyl group of G. Recall that for
G D PGLn, we discussed how pullback along the G-equivariant action map

G � B act
�! B � B;

.g; B/ 7! .gBg�1; B/

can be viewed as an analogue of the closure operation ˇ 7! Ǒ on braids ˇ 2 Brn.
Recall, as well, that we motivated act in terms of the simpler diagonal map
id � id W Oe D B! B � B. Somewhere in between these options is their fiber
product, which we will denote QG ! B � B. At the level of points,

QG D f.g; B/ 2 G � B j gBg�1 D Bg
D f.g; B/ 2 G � B j g 2 Bg:
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We can check that under the isomorphism of stacks ŒGn.G �B/� ��! ŒG=Ad.B/�,
the substack ŒGn QG� corresponds to ŒB=Ad.B/�. The scheme QG is related to W
through the following fact: If g 2 G.k/ is sufficiently generic, then W acts
simply transitively on the set of Borels containing g. That is, the forgetful map

� W QG ! G

restricts to a W -cover over some dense open locus. It is called the Grothendieck
alteration or the Grothendieck–Springer simultaneous resolution, for reasons
that we explain later.

18.3.

To give more detail, recall some definitions: An element g 2 G.k/ is regular if
and only if its centralizer in G has minimal dimension, as an algebraic group,
among elements of G.k/. It is semisimple, resp. unipotent, if and only if it
is mapped to a diagonalizable, resp. unipotent, element under any algebraic
representation G ! GL.V / (with V a vector space over k), or equivalently,
some faithful algebraic representation of G.

Remark 18.1. We previously used the last two definitions to state the existence
and uniqueness of a Jordan decomposition g D gsgu D gugs for any g, with gs
semisimple and gu unipotent. A confusing point here is that if g is semisimple,
then g D gs, but if g is unipotent, then it can happen that g ¤ gu.

The reason is that Jordan decomposition in GL.V / is bootstrapped from an
additive version in End.V / � GL.V /. Explicitly, suppose that g D �s C �n

in End.V / with �s diagonalizable and �n nilpotent such that �s�n D �n�s. If
g 2 GL.V /, then �s 2 GL.V /, so the multiplicative decomposition of g is given
by gs D �s and gu D 1C ��1s �n D 1C �n�

�1
s .

By Milne Exercise 17.3(b), g is regular if and only if the semisimple part gs in
its Jordan decomposition is regular. (Note that Milne initially defines regularity
in a different way.)

The above conditions on g can be rewritten in terms of subvarieties of G. To
explain how this works for regularity, form the group scheme of centralizers

I :D f.x; z/ 2 G �G j zxz�1 D xg
pr1

�! G:

By the upper semicontinuity of fiber dimension,1 there is a nonempty open
subvariety Greg � G such that dim Ig is minimized among g 2 G.k/ precisely
when g 2 Greg.k/. We say that Greg is the regular locus. Similarly, let Gss � G

denote the semisimple locus, and let Grs D Greg \Gss, the regular semisimple

1See https://mathoverflow.net/q/193

https://mathoverflow.net/q/193
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locus. Since regularity and semisimplicity are preserved by conjugation, these
loci are all stable under Ad.G/.

By Milne Corollary 17.36, every semisimple element of G.k/ belongs to T .k/
for some maximal torus T � G. By the conjugacy of maximal tori, we deduce
that for any fixed T , the composition T ! Gss ! ŒGss=Ad.G/� is surjective on
k-points. It restricts to a map T reg ! ŒGrs=Ad.G/�. In fact we have a stronger
result, stated in terms of affine GIT quotients X �H :D kŒX�H :

Theorem 18.2 (Chevalley Restriction). The maps T ! Gss ! G descend to
isomorphisms of varieties

T �W
�
�! Gss � Ad.G/

�
�! G � Ad.G/;

which further restrict to an isomorphism T reg �W
�
�! Grs � Ad.G/.

In fact, Chevalley worked with the Lie algebras, and only in characteristic zero.
The statement at the level of algebraic groups, and in positive characteristic, is
proved in §3 of an exposition by Springer–Steinberg titled “Conjugacy Classes”,
in a volume titled Seminar on Algebraic Groups and Related Finite Groups.

We can define a map QG ! T as follows. First, we claim that if B;B 0 are any
two Borels ofG, then there is a canonical isomorphism between their quotients by
their respective derived subgroups U;U 0. Indeed, we know thatB 0 D gBg�1 and
U 0 D gUg�1 for some g 2 G.k/; we then check that the induced isomorphism
B=U

�
�! B 0=U 0 does not depend on g. Thus we may identify all of these

quotients with the same algebraic group TG over k, which is sometimes called
the universal Cartan torus of G. There is a map

QG! TG;

.g; B/ 7! g mod ŒB; B�:

Henceforth, we fix a particular T arising from some Borel B D T ⋉ ŒB; B� and
the resulting identification T D TG .

Let � rs W QGrs ! Grs be the pullback of � W QG ! G. The map QG ! T restricts
to a map QGrs ! T reg. Henceforth, we write the G-action on QG as a right, not left,
action, to emphasize the equivariance of � and � rs. We can now state:

Theorem 18.3 (� Springer). The square

Œ QGrs=G� T reg

ŒGrs=Ad.G/� Grs �G D T reg �W

� rs

is cartesian. The right-hand vertical arrow is an étale cover with Galois group
W , and hence, the same is true of the left-hand vertical arrow.
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Example 18.4. Take G D GLn and T the diagonal torus. We identify W with
Sn. The Chevalley map ŒG=Ad.G/� ! T � W corresponds to the map that
sends any conjugacy class of G to the unordered multiset of diagonal entries
in its Jordan normal form. Conversely, any such multiset determines a unique
semisimple conjugacy class: namely, the class of diagonalizable matrices with
those eigenvalues. The conjugacy class is regular if and only if the values are
pairwise distinct.

Lifting along T ! T � W corresponds to imposing a total ordering on an
unordered multiset of eigenvalues. If the values are pairwise distinct, then W
acts simply transitively on their total orderings.

Now fix a semisimple element g 2 G.k/. The set TŒg� of elements of T .k/
conjugate to g can be identified with the set of total orderings on the eigenvalues
of g. If g is also regular, then W acts simply transitively on TŒg�, and at the
same time, the only flags in kn stabilized by these elements are those split by the
coordinate axes: i.e., the W -translates of the standard flag. In this case, fixing
an element t 2 TŒg� determines an equivariant bijection between the elements of
TŒg� and these flags, or equivalently, the W -conjugates of the upper-triangular
Borel B: i.e., the set of Borels containing T .

Writing g D hth�1, we conclude that the Borels containing g are precisely
those of the form hwBw�1h�1. In this way, the fiber of � rs W QGrs ! G above g
is the pullback of TŒg�.

18.4.

All the varieties that we discussed above can be defined over k1 D Fq, not
just over k. Henceforth, we assume that F acts trivially on W . Writing
QG1; G

reg
1 ; G

ss
1 ; G

rs
1 ; T

reg
1 for the Fq-structures on QG;Greg; Gss; Grs; T reg, we find

that Theorem 18.3 remains true over k1, not just over k.
We can further check that W acts freely on T reg, hence on T reg

1 . In general, it
turns out that if t 2 T .k/ has stabilizerWt inW , then its (the identity component
of) stabilizer in G is a Levi subgroup of G with Weyl group Wt . For t to be
regular, this Levi must be a torus, hence equal to T ; in this case, Wt is trivial.

So the map T reg
1 ! T

reg
1 � W is an étale cover with deck transformation

group W . By Theorem 18.3, the same holds for � rs
1 W
QGrs
1 ! Grs

1 . In particular,
the constant sheaf . NQ`/ QGrs

1
2 DG1

.G1/ admits a W -equivariant structure, so its
pushforward admits a W -action that we can decompose into isotypic summands:

� rs
1;Š.
NQ`/ QGrs

1
D � rs

1;�.
NQ`/ QGrs

1
D

M
�2Irr.W /

�˝ L1;�:

Here, L� is lisse for all �. The hypothesis that � is irreducible implies that
L�;1hdimGi is simple as an object of PervG1

.G1/.
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It turns out that Grs
1 forms a dense open of Greg

1 . (For G D GLn under
the standard Frobenius, this follows from the explanations in Example 18.4.
Therefore, Grs

1 also forms a dense open of G1. Writing j1 W Grs
1 ! G1 for the

inclusion, we are led to consider

A�;1 D j1;Š�L�;1hdimGi:

These are simple, G1-equivariant perverse sheaves on G1, which are mixed but
not necessarily pure. Lusztig discovered that they bear a close analogy with the
unipotent principal series characters of GF . To describe it, we tie this story back
to the Hecke category.

Recall that a correspondence between varieties X and Y is a diagram of
varieties of the form X  Z ! Y . We define the horocycle correspondence to
be the diagram of G1-equivariant morphisms

B � B act
 � G � B �

�! G;

where act.g; B/ D .gBg�1; B/ and �.g;B/ D g. The map � extends the
projection map QG ! G, so our notation remains consistent. We are led to
consider the character functor

CH1 :D �1;Šact�1hdimG � 2 dimBi W DG1
.B1 � B1/! DG1

.G1/:

It turns out that CH1 provides something close to a categorification of the cocenter
map for HW .x/, but in fact, contains even more information.

Recall our notations Ow;1; jw;1; �w;1; Ew;1. For all w 2 W , let

Kw;1 D CH1.�w;1/ D CH1.jw;1;Š. NQ`/Ow;1
hdimOwi/;

NKw;1 D CH1.Ew;1/ D CH1.ICOw;1
hdimOwi/:

The smoothness of act1 means that the pullback act�1 is perverse t -exact. Due to
the adjunction act1;Š ` actŠ1 D act�1hdimBi, it also preserves (semi)simplicity.
At the same time, by the decomposition theorem, the properness of �1 means
that the pushforward �1;� sends any mixed simple perverse sheaf E1 to a mixed
complex isomorphic, after pullback from G1 to G, to a direct sum of shifts of
simple perverse sheaves: more precisely, that ��E '

L
i
pHi.E/Œ�i � with each

term pHi.E/ semsimple. Thus:

NKw '
M
i

pHi. NKw/Œ�i �

with each term pHi. NKw/ semisimple. This suggests that even before pullback
from G1 to G, the sum

L
i
pHi. NKw;1/Œ�i � might provide a semisimplification

of NKw;1.
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Let MG � DG1
.G1/ be the full additive subcategory generated by shift-twists

of mixed objects of PervG1
.G1/. As with ŒCW �˚, we regard ŒMG�˚ as a ZŒx˙1�-

module on which x acts by h�1i. We will state a mysterious identity in ŒMG�˚,
discovered by Lusztig, that connects the objects NKw;1 and A�;1 to the very
different geometric setting of Deligne–Lusztig theory.

18.5.

To this end, it is convenient to introduce an intersection-cohomology analogue of
the unipotent Deligne–Lusztig virtual characters

Rw :D
X
i

.�1/iHic.Xw ; NQ`/:

Here, recall that Xw D fB 2 B j B w
�! FBg. Let NXw � B be the Zariski closure

of Xw , and let

NRw.x/ D
X
i

.�x/iHic. NXw ; IC NXw
/:

For all � 2 Irr.W /, let �x W KHW ! K be the trace that corresponds to
� W KW ! K under Tits deformation. Let

R� D
1

jW j

X
w2W

�.w/Rw ;

and let �� 2 Irr.GF / be the unipotent irreducible character indexed by �. Recall
that this means

Re D
M
�

�� ˝ �xjx!q1=2 as a .GF ;HW .q
1=2//-bimodule:

Finally, let .cw/w2W be the Kazhdan–Lusztig basis of HW .x/.
The following statement combines a result from Lusztig’s book Characters of

Reductive Groups. . . , as cited on page 67 of Carter’s “On the Representations of
the Finite Groups of Lie Type. . . ”, and a result extracted from Cor. 14.11 and
Thm. 23.1 of Lusztig’s “Character Sheaves” papers.

Theorem 18.5 (Lusztig). Let

Œ NKw;1� D
X
i

.�1/i ŒpHi. NKw;1/�

in ŒMG�˚. Then for all �, we have

x�`.w/. NRw.x/; ��/GF ;x D

X
 2Irr.W /

.R ; ��/GF x.cw/ D .Œ NKw;1� W ŒA�;1�/x;

where on the left-hand side, .�;�/GF ;x is the ZŒx˙1�-linear extension of .�;�/GF ,
and on the right-hand side, .� W �/x refers to ZŒx˙1�-graded multiplicity.
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As far as I understand, Lusztig proved the right-hand equality case by case,
after reduction to the setting where G is almost-simple. It is hoped that the
.1; 2/-categorical methods of Gaitsgory, Rozenblyum, Varshavsky, et al. will
provide a more conceptual proof.

An important warning: The left-hand equality does not say that the only
irreducible characters of GF occurring in NRw.x/ take the form ��. Similarly, it
is not true that the only Jordan–Hölder factors of the mixed perverse sheaves
pHiHi. NKw;1/ are the objects A�;1.

In general, simple perverse sheaves occurring as Jordan–Hölder factors of
the objects NKw , resp. NKw;1, are called (mixed, equivariant) unipotent character
sheaves, resp. mixed unipotent character sheaves. Just as we define cuspidal
irreducible characters of GF to be those not occurring in any principal series, we
define cuspidal unipotent character sheaves to be those not isomorphic to A� for
any �.

The objects Kw;1 are more troublesome, since the objects �w;1 are not
semisimple. Nonetheless, in an appropriate split Grothendieck group, it turns out
that the change of basis from the classes ŒpHi.Kv;1/� to the classes ŒpHi. NKw;1/�

is given by the Kazhdan–Lusztig polynomials Pv;w.q/, just like the change
of basis from the classes Œ�v;1� to the classes ŒEw;1� in ŒHW �4 D HW .x/. In
particular:

Corollary 18.6 (Lusztig). Let

ŒKw;1� D
X
i

.�1/i ŒpHi.Kw;1/�:

Then for all �, we haveX
 2Irr.W /

.R ; ��/GF x.�w/ D .ŒKw;1� W ŒA�;1�/x:

In particular, taking x! 1, we have

.Rw ; ��/GF D

X
 

.R ; ��/ .w/ D .ŒKw � W ŒA��/;

where on the right-hand side, .� W �/ is the ungraded multiplicity of A� in Kw .


	18. 
	18.1. 
	18.2. 
	18.3. 
	18.4. 
	18.5. 


