
7.

Today we focus on the GF -equivariant endomorphisms of Rw;1 D H�c .Xw/,
especially Re;1.

7.1.

We have discussed a formula of Deligne–Lusztig that expresses the values of the
virtual characters Rw;� in terms of those where � D 1, after replacing GF with
(the identity component of) the centralizer of some semisimple element. This
motivates us to focus on the virtual characters Rw;1.

Following Lusztig, an irreducible character of GF is unipotent if and only if it
occurs with nonzero multiplicity in Rw;1 for some w 2 W . Let

Uch.GF / � Irr.GF /

be the set of unipotent irreducible characters of GF . Determining Uch.GF / for
all G;F was possibly the hardest part of Lusztig’s work on the representations of
finite groups of Lie type. It seems that the complete details appeared for the first
time in his 1984 “orange book”, 8 years after the Deligne–Lusztig paper. The
main theorem is:

Theorem 7.1 (Lusztig). We can index Uch.GF / by a set that that depends
only on W and the automorphism of W determined by F : not on G or even q.
Moreover, if G is of type A, meaning W D Sn, then Uch.GF / consists solely of
summands of Re;1: there are no cuspidal unipotent irreducibles.

The first statement should be surprising because, as we already saw with
SL2.Fq/, the Deligne–Lusztig varieties Xw are highly sensitive to q.

The second statement already fails to generalize to GF D Sp4.Fq/. The
irreducible characters of this group were classified by Srinivasan by hand in
1968, well before Deligne–Lusztig’s work. She found an irreducible that, in her
paper, was labeled �10, and which, in Lusztig’s language, is the unique cuspidal
unipotent irreducible character of Sp4.Fq/.1 The degree of this character is
1
2
q.q � 1/2.
Suppose that F acts trivially on W . Here Lusztig found that for � 2 Irr.W /,

the virtual characters

R� :D
1

jW j

X
w2W

�.w/Rw;1

come close to being irreducible characters of GF . To make this assertion more
precise, we need to discuss the irreducible summands of Re;1 in more detail.

1Srinivasan’s label is still used—see Wikipedia—even though it conflicts with our use of �
for characters of maximal tori.
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7.2.

Fix an F -stable Borel pair .B; T /, so that Re;1 D IndG
F

BF .1/. Note that the
right-hand side is independent of étale cohomology, so we can generalize its
coefficients to any ring A. Throughout what follows, we assume that A contains
ZŒq�1� as a subring. We define the Iwahori–Hecke algebra, or Hecke algebra, of
.GF ; BF / over A to be

H D HGF

TF .1/ :D EndAGF .IndAG
F

ABF .1//:

Let us review a result discussed earlier: that H admits an A-linear basis indexed
by W F .

For any w 2 W , let Ow � G=B � G=B be the G-orbit of pairs .yB; xB/
such that By�1xB D BwB . We say that such a pair is in relative position w
and write yB

w
�! xB . If w is fixed by F , then Ow is F -stable. Let hw 2 H be

the Hecke operator

hw.1xBF / D
X

yBF2GF =BF

yB
w

�!xB

1yBF :

Then we have a sequence of bijections

W F
�
�! BF nGF =BF

�
�! GF n.GF =BF �GF =BF /;

w 7! BFwBF 7! OF
w ;

and an isomorphism of free A-modules

AŒGF n.GF =BF �GF =BF /�
�
�!H;

1OF
w
7! hw :

The latter is an isomorphism of A-algebras, being the restriction of the map

AŒGF =BF �GF =BF �
�
�! EndA.IndAG

F

ABF .1//

that takes the convolution .f1 � f2/. Ny; Nx/ D
P
Nz f1. Ny; Nz/f2. Nz; Nx/ on the left-

hand side to the composition of endomorphisms on the right-hand side.

7.3.

To go further, we relate the multiplication in H to the structure of W F . First, we
consider W . Below, let U D ŒB; B�, so that B D T ⋉ U .

Recall that every parabolic subgroup of G contains some Borel. Consider
the parabolics that contain B with codimension one. Given such a parabolic
P , we see that P=B must be a proper, rational smooth curve, hence isomorphic
to P1, the flag variety of SL2 and PGL2. One can show that P D LP ⋉ UP ,
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where UP � U is the unipotent radical of P , and the Levi quotient LP is a
reductive group for which ŒLP ; LP � is either SL2 or PGL2. (See Milne Chapter
20.) Then T forms a maximal torus of LP , and NLP

.T /=T D NP .T /=T � W

is a Weyl group of order 2, hence generated by an element s. Conversely, s and
B together determine P , since we can check that P D B [ BsB , just like in
the Bruhat decomposition of SL2 and PGL2. In particular, there are only finitely
many possibilities for P . Together, the corresponding elements s generate W .

Recall that W acts on the mutually dual character and cocharacter lattices:

X.T / D Hom.T;Gm/ and X_.T / D Hom.Gm; T /:

As it turns out, the elements s above act on X.T / and X_.T / by reflections.
Explicitly, since ŒLP ; LP � is SL2 or PGL2, the inclusion T � LP defines two
opposed root vectors in X.T /, resp. coroot vectors in X_.T /. Then s acts on
X_.T /, resp. X.T /, by reflection across the dual hyperplane. As we run over
all P , the roots, resp. coroots, that arise in this way are called the simple roots,
resp. simple coroots, of G in X.T /. This is the start of a rich formalism in Lie
theory—of root systems, coroot systems, and root data—which we will only
sketch here. For the roots of G D Sp4, see #2 on Problem Set 0.

We can tensor up the lattice X_.T / from Z to any field of characteristic zero,
such as R, to obtain a representation of W over that field. Altogether, W is a
reflection group on a real vector space, and it preserves a lattice of full rank
within this vector space, meaning it is crystallographic. The s are called its
simple reflections.

The subgroup W F � W remains a crystallographic real reflection group,
since it acts on the sublattice of F -invariants X_.T /F . The dual to this sublattice
is the quotient lattice of F -coinvariants X.T /F :D X.T /=hF � 1i. It turns out
that the set of simple roots in X.T / is F -stable, and that its image in X.T /F
classifies its F -orbits. In this way, one shows thatW F is generated by reflections
indexed by F -orbits of simple roots.

7.4.

Let S � W be the set of simple reflections, which is tautologically indexed by
the simple roots. Coxeter showed that W admits a presentation of the form

W D hS j .st/ms;t D e for all s; t 2 Si;

where the ms;t are a collection of positive integers such that ms;s D 1 and
ms;t D mt;s for all s; t . Any group W with a presentation of this form, where
S is finite, is called a Coxeter group, and the presentation is called its Coxeter
presentation. The pair .W; S/ is also called a Coxeter system.
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Example 7.2. In the zeroth lecture, we gave a Coxeter presentation for the
symmetric group Sn. Namely, S is the set of simple transpositions si D .i; iC1/
for 1 � i � n � 1; we have msi ;sj D 2 for ji � j j > 1, whereas msi ;sj D 3 for
ji � j j D 1.

Example 7.3. For m � 3, the dihedral group of the regular m-gon has a Coxeter
presentation: namely,

hs; t j s2 D t2 D .st/m D ei:

Tits observed that for all w 2 W and s 2 S ,

either BwBsB D BwsB or BwBsB D BwsB [ BwB;

and similarly with the order of w; s switched everywhere. In the first case, we set
ws > w; in the second case, we set ws < w. These relations generate a partial
order onW , which turns out to be a more explicit description of the closure order
on Bruhat cells BwB � G, or equivalently, orbits Ow � G=B �G=B .

In particular, the relations above show how to describe the multiplication on
the Hecke algebra, up to structure constants. We will need the refinement to
Bruhat decomposition, given in Theorem 21.80 in Milne, which states:

Theorem 7.4 (Bruhat). For all w 2 W , the maps

U=.wUw�1 \ U/! UwB=B
id
�! BwB=B

xwUw�1 7! xwB

are isomorphisms of varieties for all w 2 W . (Note that wUw�1 is independent
of how we lift w to NG.T /, because T normalizes U .)

The Bruhat length of w, denoted `.w/, is the common dimension of the
varieties above. If w is fixed by F , then wUw�1 is F -stable like U , and since
wUw�1 \ U is connected, we deduce by Lang that

jU F =.wUw�1 \ U/F j D j.U=.wUw�1 \ U//F j D q`.w/

Let SF � W F be the generating set indexed by the F -orbits of the simple roots,
so that .W F ; SF / is also a Coxeter system. Via the convolution description of
the Hecke algebra, Iwahori found:

Theorem 7.5 (Iwahori). For all w 2 W F and s 2 SF , we have the quadratic
relations

hwhs D

(
hws ws > w;

q`.s/hws C .q
`.s/ � 1/hw ws < w:

(7.1)
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Writing .ms;t/s;t for the integers in the Coxeter presentation of W F , we also
have the braid relations

ms;t terms‚ …„ ƒ
hsht � � � D

ms;t terms‚ …„ ƒ
hths � � �(7.2)

for all s; t 2 SF . Together, (7.1) and (7.2) generate all relations in H as an
algebra over A.

Example 7.6. The simplest example: If G D SL2 and F is standard, so that
W D fe; sg, then the Iwahori–Hecke relation

h2s D qhe C .q � 1/hs

amounts to this: The space of GF -equivariant functions on .P1/F � .P1/F is
spanned by 1OF

e
, the indicator function on the diagonal, and 1OF

s
, the indicator

function on the complement; andX
z2.P1/F

1OF
s
.y; z/1OF

s
.z; x/ D jfz 2 .P1/F j z ¤ x; ygj

D

(
q x D y;

q � 1 x ¤ y

D q � 1OF
e
.y; x/C .q � 1/ � 1OF

s
.y; x/:

Example 7.7. Recall that if W D S3, as for SL3;GL3;PGL3, then we can
choose F so that it swaps the two simple reflections s; t . Then W F D fe; w0g

and SF D fw0g, where w0 D sts D tst . This gives an example where w 2 SF ,
but `.w/ D 3.

7.5.

Crucially, the role of q in Iwahori’s theorem is generic. We are led to introduce a
version of the algebra where q is replaced by a genuine formal variable.

In what follows, .W; S/ is abstract: It could be the Coxeter system .W; S/

attached to G;B , the smaller Coxeter system .W F ; SF / attached to GF ; BF , or
even something infinite or non-crystallographic. We define the generic Iwahori–
Hecke algebra of .W; S/ in one parameter to be the ZŒx˙1�-algebra

HW D HW .x/ :D
ZŒx˙1�Œ�w j w 2 W �

IW
;

where IW is the two-sided ideal generated by

�w�s � �ws ws > w;

�w�s � hws � .x`.s/ � x�`.s//hw ws < w

)
for all w 2 W and s 2 S;

ms;t terms‚ …„ ƒ
�s�t � � � D

ms;t terms‚ …„ ƒ
�t�s � � � for all s; t 2 S:
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Here we can make sense of the x! 1 limit:

HW =hx � 1i ' ZW:(7.3)

At the same time, if we set A D ZŒq˙1=2� in our earlier discussion, then

HW F =hx � q1=2i ' HGF

TF .1/

via the map that sends �w 7! q�`.w/=2hw .
The reason we prefer this normalization involving q˙1=2 is that for W of

type E7 or E8, the following theorem only works when we adjoin x, not just x2.
Admittedly, for Weyl groups of almost-simple algebraic groups of other types,
x2 is sufficient.

Theorem 7.8 (Benson–Curtis–Lusztig). Suppose that W is finite. Then the ring
isomorphism (7.3) lifts to a Q.x/-algebra isomorphism

Q.x/˝HW ' Q.x/W:

Corollary 7.9. If W is finite, then the isomorphism classes of simple modules
over Q.x/˝HW are in bijection with the irreducible characters of W .

7.6.

Now we return toGF . Suppose thatA is an integral domain with field of fractions
K. Let KH D K ˝A H . Assume for now the following facts:

(1) KGF D EndKH .IndKG
F

KBF .1//.
(2) If � 2 Irr.W /, then the corresponding simple .Q.x/ ˝ HW /-module

takes the form Q.x/˝ZŒx˙1� E�, where E� is a simple HW -module. Let
KE�;q D K ˝ZŒq˙1=2� E�jx!q1=2 .

Then the double centralizer theorem yields

IndKG
F

KBF .1/ '
M

�2Irr.W F /

V� ˝K KE�

as a .KGF ; KH/-bimodule, where each V� is either zero or simple over KGF .
It turns out that V� is always nonzero. So these are precisely the irreducible
unipotent principal series characters of GF . Let �� be the character of V�.

Theorem 7.10 (Lusztig). Suppose that F acts trivially on W . If W D Sn for
some n, then we have R� D �� for all � 2 Irr.W /. Else, there is a block-
diagonal matrix with small blocks that takes the vector of virtual characters
R�, possibly extended by some zeroes, to the vector of all irreducible unipotent
characters of GF , including cuspidals.

When F acts nontrivially on W , Lusztig proved a similar, but more compli-
cated statement. See Secion 7.3 in Carter’s survey paper.
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