S.

Throughout, G is a connected, smooth reductive algebraic group over k = Fq
with a Frobenius map F : G — G. We fix an F-stable Borel pair (B, T) and
write U = [B, B]. We fix § > 1 so that F® acts trivially on W = Ng(T)/T,
and a section w > W : W — N ps (TF8). With these choices, X, € G/B and
Xu» € G/U are Fl-stable forall w € W.

5.1

Recall that in our running example where G = SL, and F is standard, we can
write W = {e, s} with e = id, and take § = 1. Last time, we computed the
graded Q¢[F]-modules formed by the compactly-supported £-adic cohomologies
of X, and Xj:

HX(X,) ~ Q2U™V  HX(X,) ~ Q¥[-1] @ Qu[-2](—1).

Above [—m] means “shift up by degree m” and (—m) means “twist the Frobenius
action by a factor of ¢"”.
One more property of £-adic cohomology that I could have added to the list

from last time:
(10) HO(X) is the vector space of Q¢-valued functions on the set of connected
components of X.
This gives another way to identify H*(X,) = H2(X,), and by Poincaré duality,
H2(X,) >~ H%(X,)V[-2](—1). But it does more: It enables us to identify the
G -actions on these vector spaces. It remains for us to identify the G¥ -action
on H!(Xj).

5.2.

As mentioned last time, it is easier in general to work with the virtual character
R, ¢ than with the individual representations H’, (Xw)[A]. For any k-scheme
of finite type X and automorphism g : X — X, the Lefschetz number of g on
HY(X) is defined to be

Lx(g) =) (=) tr(g | HL(X)).

1

The Lefschetz fixed-point formula tells us that if f is a Frobenius map, then
Lx(f) =|X/|. At the same time,

‘CXw = Rw,l,

‘C)Zw = ZRW’G
0



as functions on G¥.

The next result that we present, combining Exercise 4.7.4 and Theorem 4.4.12
in Geck, is a bridge between these two uses of Lefschetz number. Recall that
g : X — X commutes with a Frobenius map F' : X — X corresponding to
some F,-rational structure X = X; ® k if and only if g descends to X;, meaning
g = g1 ®1id. Note that since X is of finite type, g is cut out by finitely many
polynomials in finitely many variables. Thus, g is always defined over some
finite subfield of k; in other words, given g, we can always find some Frobenius
that commutes with g.

Theorem 5.1. Suppose that X is a smooth k-variety with Frobenius f, and
g : X — X is an automorphism of finite order that commutes with f. Then:

(1) gf™ is a Frobenius map on X for allm > 1.
(2) The formal series

Lx(g.1):=—) |X&" |

m>1
satisfies Lx(g) = lim; o Lx(g,1).

Proof of (2) from (1). Since f and g commute, we can triangularize them simul-
taneously. Suppose that (A; ;) ;, resp. (i), is the list of eigenvalues of f,
resp. g, on H.(X). Since g /™ is a Frobenius map, the Lefschetz formula gives
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Now observe that — —last — oo. ]

Remark 5.2. The Weil zeta series of X with respect to f is defined by

Zx(t) =exp (Z |x /" %)

m>1

where exp is a formal exponential. We see that
) d
Lx(@d,t) = —tE log Zx(t).

In this sense, £(¢, | g, X) is a mild generalization of the zeta series.



Corollary 5.3. Keeping the hypotheses of Theorem 5.1, suppose that X is the
union of disjoint subvarieties X' and X" that are f -stable and g-stable. Then
L x = L x + L X

as functions of g.

Previously, we sketched the reason why X, and X, form smooth varieties. If
g € GF, then the action of g on G/B and G/U commutes with that of F, and
hence, its action on X,, and X,, commutes with that of F¥. So we can apply
Theorem 5.1 and its corollary to the case where X = Xy, X w, OF some unions
of these, and f = F® and g € GF.

Returning to the setup with G = SL, and F standard, we deduce that

Lop=CLx, +Lx, =Ren1 + Rs1.
We also know the cohomology of G/B, since it is P!:
H;(G/B) ~ H*(G/B) ~ Q¢ & Q([-2](-1),

Since H°(G/ B) carries the trivial representation of G¥, the same is true of its
Poincaré dual H*(G/B). Therefore Lg/p(g) = 2 for all g.

From Mackey, we saw that the G -equivariant endomorphisms of R, ; =
H*(X,) = H%(X,) form a 2-dimensional algebra, which forces R, ; to be a sum
of two irreducible representations of G¥'. But R, ; is also the space of functions
on X., which contains the trivial representation. So we must have

R.1 =14 St for some irreducible character St.
This is the Steinberg character mentioned previously. Finally,
Ri1=Lgp—Ren1 =2—(1+St)=1-St.
Since Ry,; = H!(X;) ® H2(Xj), and H?(X;) also carries the trivial character,
we deduce that H! (X,) carries the Steinberg character.

5.3.

Before we can describe Ry 9 = H}(X;)[0] and Ry ¢ for other 6, we should
describe T*F more explicitly. Taking T to be the diagonal torus given by

T(k) = {ts |a €k}, wherei, = (a a—l)’

we see that s - t, = t,—1. Therefore,
TF ={t,eT|a?=aV={t,e T |a?™ =1}.

In particular, 75 is cyclic of order ¢ + 1.

Note that the condition a?t! = 1 forces a € F;z. Moreover, a € F; only
happens for a = £1. These computations show that in general, the embedding
of T into G does not restrict to an embedding of T*F into G¥.



54.

Nonetheless, it turns out that there is another F -stable maximal torus S € G such
that 7°F is conjugate to S¥ € GF'. It is convenient to explain a generalization
of this fact to arbitrary G and 7T'. In fact, we only need 7" to be F-stable, not
necessarily contained in an F-stable Borel, for what follows.

Let L : G — G be the Lang map L(g) = g~ ' F(g), and let 7, F be the set
of F-stable maximal tori in G. There are maps

_ o Tl
w 2T LN (T (k) £ T

Note that if S € Tg, r satisfies S = gTg~! for some g € G(k), then by the
F-stability of S, we require g € L™Y(Ng(T))(k). Thus the rightward map is
surjective, just like the leftward map. Moreover:

(1) If w € W and S € Tg,r admit a common lift g € L~ (Ng(T))(k), then
the identity S = gTg™! restricts to

SF — gTng_l.

In particular, starting from w, resp. S, we can produce some S, resp. w,
and a common lift g that together satisfy the identity above.

(2) IfgTg™! = g'T(g")"! forsome g, g’ € L™ (Ng(T))(k),and w, w’ € W
are the respective images of L(g), L(g’), then

(5.1) w' = x"'wF(x) forsomex e W.

Namely, take x to be the image of g7!g’ € Ng(T)(k).

In general, we say that elements w, w’ € W are F-conjugate if and only if (5.1)
holds. The discussion above shows that there is a well-defined map from 7¢,
onto the set of F-conjugacy classes of W. The image of a torus under this map
is sometimes called its rype.

Proposition 5.4. The map that sends an F-stable maximal torus to its type
descends to a bijection

T6.r /(GT -conjugacy) = W/(F-conjugacy).

Proof. The original map is surjective because the map L™ (Ng(T))(k) — W
is surjective, and factors through the G ¥ -conjugacy relation on 7, r because if
g€ G(k)and h € GF, then L(hg) = L(g).

It remains to show injectivity. Suppose that g, g’ € L(Ng(T))(k), that w, w’
are the respective images of L(g), L(g’), and that w’ = xwF(x) for some



x € W. Lifting x to x € Ng(T), we must have L(g’) = t~!L(gx) for some
t € T(k). Setting h = g’g™1, we see that

L(hy=L(g'sg”™") =gt7'x7 g7 ' F(gxg™") = (gxg) "' (gt'g ) F(gxg™")

for some ¢’ € T'(k). Setting h’ = hgx~'g™!, we get L(h') = gt'g™'. By Lang,
we can find z € gT(k)g~! such that L(z) = gt'g™!. Setting i’/ = h'z™1, we
see that F(h") = h" and g'T(g')"! = h"(gTg ') (h")™!, as needed. O

5.5.

To conclude our discussion of fixed-point formulas, we present two major re-
sults by Deligne—Lusztig, and explain their application to the discrete series of
SL,(F,). Geck omits their proofs in his Section 4.5.

The first result is Deligne—Lusztig Theorem 3.2. To motivate it, recall that any
invertible matrix g over a field has a Jordan decomposition g = gsgu = gu&s,
where g, is diagonalizable (or semisimple) and g, is unipotent. If the field
characteristic is p > 0 and the (multiplicative) order of g is finite, then the
orderof g, is coprime to p, while the order of g, is a power of p.

Theorem 5.5 (Deligne—Lusztig). Suppose that X is a smooth affine k-variety
with Frobenius f, and g : X — X is an automorphism of finite order that
commutes with f. Suppose that g = gs8u = gu&s, Where g5 : X — X, resp.
gu . X — X, has order coprime to p, resp. a power of p. Then

Lx(g) = Lxss(gu)-

In the SL, example, this theorem implies that for any t € T*F, we have
Ly (t) = Lz (1). But TS acts freely on X, so the right-hand side vanishes
whenever ¢ ;éA 1! By character theory, we deduce that as a representation of 7%,
the vector space H (X;) is a @-power of the regular representation of 7% . Since
T5F is abelian, every character occurs in the latter with the same multiplicity.
Therefore

dimRs 9 =dimRs;; =1—¢q forall6.

To actually determine how these characters decompose beyond the 8 = 1 case,
we need more firepower.

The following result, Deligne—Lusztig Theorem 6.8, generalizes the orthogo-
nality formula we obtained earlier from Mackey decomposition. To make sense
of the statement, observe that if 7%F = TV'F for some w,w’ € W, sothatw, w’
are F-conjugate, and x € W satisfies w’ = x~'wF(x), then xT% Fx~1 = TwF,
Hence, there is a bijection from characters of 7%’ to characters of T*F given
by 0’ = *0'(—) = 6'(x"1(—)x).



Theorem 5.6 (Deligne—-Lusztig). For any w,w’ € W, and for any character 0
of TVF  resp. 0/ of TV'F, we have

(Rug. Ruo)gr = [{ix e W |w' = x""wF(x) and 6 = *0'}|.
Corollary 5.7. In the setup above,
(Ru.g.Ruo)gr = ix e W |w=x""wF(x) and 6 = *6}.
In the SL, example, we have

2 0%2=1,

(RS,Q’ Rs,G)GF =
1 else.

In particular, —R; ¢ is an actual, irreducible representation of GF whenever 0 is
a character of T such that §2 # 1. For ¢ odd, there are ¢ — 1 choices of such
6, which form %(q — 1) conjugate pairs under s. Each pair contributes one new
irreducible. The remaining two irreducibles of G¥ are the summands of Ry g for
0 the order-2 character of 75 . Taken together, these are all the discrete series
representations of SL,(Fy).
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