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Throughout, G is a connected, smooth reductive algebraic group over k D NFq
with a Frobenius map F W G ! G. We fix an F -stable Borel pair .B; T / and
write U D ŒB; B�. We fix ı � 1 so that F ı acts trivially on W D NG.T /=T ,
and a section w 7! Pw W W ! N

GF
ı .T F

ı

/. With these choices, Xw � G=B and
QXw � G=U are F ı-stable for all w 2 W .

5.1.

Recall that in our running example where G D SL2 and F is standard, we can
write W D fe; sg with e D id, and take ı D 1. Last time, we computed the
graded NQ`ŒF �-modules formed by the compactly-supported `-adic cohomologies
of Xe and Xs:

H�c .Xe/ ' NQ
˚.qC1/

`
; H�c .Xs/ ' NQ

˚q

`
Œ�1�˚ NQ`Œ�2�.�1/:

Above Œ�m�means “shift up by degreem” and .�m/means “twist the Frobenius
action by a factor of qm”.

One more property of `-adic cohomology that I could have added to the list
from last time:

(10) H0.X/ is the vector space of NQ`-valued functions on the set of connected
components of X .

This gives another way to identify H�c .Xe/ D H0
c.Xe/, and by Poincaré duality,

H2
c.Xs/ ' H0.Xs/

_Œ�2�.�1/. But it does more: It enables us to identify the
GF -actions on these vector spaces. It remains for us to identify the GF -action
on H1c.Xs/.

5.2.

As mentioned last time, it is easier in general to work with the virtual character
Rw;� than with the individual representations Hi

c.
QXw/Œ��. For any k-scheme

of finite type X and automorphism g W X ! X , the Lefschetz number of g on
H�c .X/ is defined to be

LX.g/ D
X
i

.�1/i tr.g j Hic.X//:

The Lefschetz fixed-point formula tells us that if f is a Frobenius map, then
LX.f / D jXf j. At the same time,

LXw D Rw;1;

L QXw D
X
�

Rw;�
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as functions on GF .
The next result that we present, combining Exercise 4.7.4 and Theorem 4.4.12

in Geck, is a bridge between these two uses of Lefschetz number. Recall that
g W X ! X commutes with a Frobenius map F W X ! X corresponding to
some Fq-rational structureX D X1˝k if and only if g descends toX1, meaning
g D g1 ˝ id. Note that since X is of finite type, g is cut out by finitely many
polynomials in finitely many variables. Thus, g is always defined over some
finite subfield of k; in other words, given g, we can always find some Frobenius
that commutes with g.

Theorem 5.1. Suppose that X is a smooth k-variety with Frobenius f , and
g W X ! X is an automorphism of finite order that commutes with f . Then:

(1) gf m is a Frobenius map on X for all m � 1.
(2) The formal series

LX.g; t/ :D �
X
m�1

jXgf m
jtm

satisfies LX.g/ D limt!1 LX.g; t/.

Proof of (2) from (1). Since f and g commute, we can triangularize them simul-
taneously. Suppose that .�i;j /j , resp. .�i;j /j , is the list of eigenvalues of f ,
resp. g, on Hic.X/. Since gf m is a Frobenius map, the Lefschetz formula gives

jXgf m
j D

X
i

.�1/i
X
j

�i;j�
m
i;j ;

from which

�LX.g; t/ D
X
m;i;j

.�1/i�i;j�
m
i;j t

m
D

X
i;j

.�1/i�i;j
�i;j t

1 � �i;j t
:

Now observe that �i;j t

1��i;j t
! �1 as t !1.

Remark 5.2. The Weil zeta series of X with respect to f is defined by

ZX.t/ D exp

 X
m�1

jXf m
j
tm

m

!
;

where exp is a formal exponential. We see that

LX.id; t / D �t
d

dt
logZX.t/:

In this sense, L.t; j g;X/ is a mild generalization of the zeta series.
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Corollary 5.3. Keeping the hypotheses of Theorem 5.1, suppose that X is the
union of disjoint subvarieties X 0 and X 00 that are f -stable and g-stable. Then

LX D LX 0 C LX 00

as functions of g.

Previously, we sketched the reason why Xw and QXw form smooth varieties. If
g 2 GF , then the action of g on G=B and G=U commutes with that of F , and
hence, its action on Xw and QXw commutes with that of F ı . So we can apply
Theorem 5.1 and its corollary to the case where X D Xw ; QXw , or some unions
of these, and f D F ı and g 2 GF .

Returning to the setup with G D SL2 and F standard, we deduce that

LG=B D LXe C LXs D Re;1 CRs;1:

We also know the cohomology of G=B , since it is P1:

H�c .G=B/ ' H�.G=B/ ' NQ` ˚
NQ`Œ�2�.�1/;

Since H0.G=B/ carries the trivial representation of GF , the same is true of its
Poincaré dual H2.G=B/. Therefore LG=B.g/ D 2 for all g.

From Mackey, we saw that the GF -equivariant endomorphisms of Re;1 D

H�c .Xe/ D H0c.Xe/ form a 2-dimensional algebra, which forces Re;1 to be a sum
of two irreducible representations of GF . But Re;1 is also the space of functions
on Xe, which contains the trivial representation. So we must have

Re;1 D 1C St for some irreducible character St:

This is the Steinberg character mentioned previously. Finally,

Rs;1 D LG=B �Re;1 D 2 � .1C St/ D 1 � St:

Since Rs;1 D H1
c.Xs/˚ H2

c.Xs/, and H2
c.Xs/ also carries the trivial character,

we deduce that H1c.Xs/ carries the Steinberg character.

5.3.

Before we can describe Rs;� D H�c .Xs/Œ�� and Rs;� for other � , we should
describe T sF more explicitly. Taking T to be the diagonal torus given by

T .k/ D fta j a 2 k
�
g; where ta D

 
a

a�1

!
;

we see that s � ta D ta�1 . Therefore,

T sF D fta 2 T j a
q
D a�1g D fta 2 T j a

qC1
D 1g:

In particular, T sF is cyclic of order q C 1.
Note that the condition aqC1 D 1 forces a 2 F�

q2
. Moreover, a 2 F�q only

happens for a D ˙1. These computations show that in general, the embedding
of T into G does not restrict to an embedding of T sF into GF .
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5.4.

Nonetheless, it turns out that there is another F -stable maximal torus S � G such
that T sF is conjugate to SF � GF . It is convenient to explain a generalization
of this fact to arbitrary G and T . In fact, we only need T to be F -stable, not
necessarily contained in an F -stable Borel, for what follows.

Let L W G ! G be the Lang map L.g/ D g�1F.g/, and let TG;F be the set
of F -stable maximal tori in G. There are maps

W
L.�/=T
 ����� L�1.NG.T //.k/

g 7!gTg�1

�������! TG;F :

Note that if S 2 TG;F satisfies S D gTg�1 for some g 2 G.k/, then by the
F -stability of S , we require g 2 L�1.NG.T //.k/. Thus the rightward map is
surjective, just like the leftward map. Moreover:

(1) If w 2 W and S 2 TG;F admit a common lift g 2 L�1.NG.T //.k/, then
the identity S D gTg�1 restricts to

SF D gT wF g�1:

In particular, starting from w, resp. S , we can produce some S , resp. w,
and a common lift g that together satisfy the identity above.

(2) If gTg�1 D g0T .g0/�1 for some g; g0 2 L�1.NG.T //.k/, andw;w0 2 W
are the respective images of L.g/; L.g0/, then

w0 D x�1wF.x/ for some x 2 W :(5.1)

Namely, take x to be the image of g�1g0 2 NG.T /.k/.

In general, we say that elements w;w0 2 W are F -conjugate if and only if (5.1)
holds. The discussion above shows that there is a well-defined map from TG;F
onto the set of F -conjugacy classes of W . The image of a torus under this map
is sometimes called its type.

Proposition 5.4. The map that sends an F -stable maximal torus to its type
descends to a bijection

TG;F =.GF -conjugacy/
�
�! W=.F -conjugacy/:

Proof. The original map is surjective because the map L�1.NG.T //.k/! W

is surjective, and factors through the GF -conjugacy relation on TG;F because if
g 2 G.k/ and h 2 GF , then L.hg/ D L.g/.

It remains to show injectivity. Suppose that g; g0 2 L.NG.T //.k/, that w;w0

are the respective images of L.g/; L.g0/, and that w0 D xwF.x/ for some
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x 2 W . Lifting x to Px 2 NG.T /, we must have L.g0/ D t�1L.g Px/ for some
t 2 T .k/. Setting h D g0g�1, we see that

L.h/ D L.g0g�1/ D gt�1 Px�1g�1F.g Pxg�1/ D .g Pxg/�1.gt 0g�1/F.g Pxg�1/

for some t 0 2 T .k/. Setting h0 D hg Px�1g�1, we get L.h0/ D gt 0g�1. By Lang,
we can find z 2 gT .k/g�1 such that L.z/ D gt 0g�1. Setting h00 D h0z�1, we
see that F.h00/ D h00 and g0T .g0/�1 D h00.gTg�1/.h00/�1, as needed.

5.5.

To conclude our discussion of fixed-point formulas, we present two major re-
sults by Deligne–Lusztig, and explain their application to the discrete series of
SL2.Fq/. Geck omits their proofs in his Section 4.5.

The first result is Deligne–Lusztig Theorem 3.2. To motivate it, recall that any
invertible matrix g over a field has a Jordan decomposition g D gsgu D gugs,
where gs is diagonalizable (or semisimple) and gu is unipotent. If the field
characteristic is p > 0 and the (multiplicative) order of g is finite, then the
orderof gs is coprime to p, while the order of gu is a power of p.

Theorem 5.5 (Deligne–Lusztig). Suppose that X is a smooth affine k-variety
with Frobenius f , and g W X ! X is an automorphism of finite order that
commutes with f . Suppose that g D gsgu D gugs, where gs W X ! X , resp.
gu W X ! X , has order coprime to p, resp. a power of p. Then

LX.g/ D LXgs .gu/:

In the SL2 example, this theorem implies that for any t 2 T sF , we have
L QXs.t/ D L QX ts .1/. But T sF acts freely on QXs, so the right-hand side vanishes
whenever t ¤ 1! By character theory, we deduce that as a representation of T sF ,
the vector space H�c . QXs/ is a˚-power of the regular representation of T sF . Since
T sF is abelian, every character occurs in the latter with the same multiplicity.
Therefore

dimRs;� D dimRs;1 D 1 � q for all �:

To actually determine how these characters decompose beyond the � D 1 case,
we need more firepower.

The following result, Deligne–Lusztig Theorem 6.8, generalizes the orthogo-
nality formula we obtained earlier from Mackey decomposition. To make sense
of the statement, observe that if T wF D T w

0F for somew;w0 2 W , so thatw;w0

are F -conjugate, and x 2 W satisfiesw0 D x�1wF.x/, then xT w
0F x�1 D T wF .

Hence, there is a bijection from characters of T w
0F to characters of T wF given

by � 0 7! x� 0.�/ D � 0.x�1.�/x/.
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Theorem 5.6 (Deligne–Lusztig). For any w;w0 2 W , and for any character �
of T wF , resp. � 0 of T w

0F , we have

.Rw;� ; Rw 0;� 0/GF D jfx 2 W j w
0
D x�1wF.x/ and � D x� 0gj:

Corollary 5.7. In the setup above,

.Rw;� ; Rw;�/GF D jfx 2 W j w D x
�1wF.x/ and � D x�gj:

In the SL2 example, we have

.Rs;� ; Rs;�/GF D

(
2 �2 D 1;

1 else:

In particular, �Rs;� is an actual, irreducible representation of GF whenever � is
a character of T sF such that �2 ¤ 1. For q odd, there are q � 1 choices of such
� , which form 1

2
.q � 1/ conjugate pairs under s. Each pair contributes one new

irreducible. The remaining two irreducibles of GF are the summands of Rs;� for
� the order-2 character of T sF . Taken together, these are all the discrete series
representations of SL2.Fq/.
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