
1.

We will explain how algebraic geometry over finite fields gives rise to interesting
finite groups. In order, we will borrow from:

� Milne, Algebraic Groups (2017)
� Geck, An Introduction to Algebraic Geometry and Algebraic Groups

(2003)
� Carter, “On the Representation Theory of the Finite Groups of Lie Type in

Characteristic 0”, in Algebra IX (1996)

I have also drawn ideas from Brion’s 2019 SCGP lectures.

1.1.

Start with algebraic varieties over an arbitrary algebraically closed field k. In
practice, they don’t form a nice category, so instead, we implicitly work in Schk ,
the category of all schemes of finite type over k.

An algebraic group over k ought to be a group object in Schk: This entails
maps m W G � G ! G and e W Spec k ! G and i W G ! G satisfying certain
axioms. Some authors add more adjectives, especially smoothness. Examples of
affine algebraic groups:

Ga; Gm; �n; GLn; Sp2n; Affn :D GLn ⋉ Gn
a:

Examples of non-affine algebraic groups: Abelian varieties, like elliptic curves.
They are precisely the connected, smooth, proper algebraic groups. Barsotti–
Chevalley says that if k is perfect, then any connected, smooth algebraic group
over k is an extension of an abelian variety by an affine algebraic group, in the
sense that we will define below.

Remark 1.1. By Milne Prop. 1.28 and Prop. 1.37, the following conditions on an
algebraic group G over k are equivalent:

(1) G is smooth.
(2) G is reduced.
(3) Its k-dimension equals that of its tangent space at the identity, i.e., its Lie

algebra.

For example: If k D NFp for some prime p, then �n D Spec kŒt �=.tn � 1/, the
algebraic group of nth roots of unity, is smooth if and only if p ∤ n. When is it
connected?

1.2.

An affine algebraic group G is controlled by its coordinate ring kŒG�. The
multiplication on G corresponds to a coproduct � W kŒG� ! kŒG� ˝ kŒG�

satisfying certain axioms. Similarly, if V is a vector space over k, then a
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representation of G on V given by action morphism G � V ! V in Schk

corresponds to a coaction morphism kŒV � ! kŒG� ˝ kŒV � satisfying certain
axioms. The linearity of theG-action on V corresponds to the coaction restricting
to a morphism V _ ! kŒG�˝ V _. In this case, V _ is an example of what we
call a kŒG�-comodule.

One can check that any kŒG�-comodule M is a filtered union of its finite-
dimensional sub-comodules. The key idea is that the coaction map must send any
vector to a finite sum of tensors. In particular, taking M D kŒG�, we can find
a finite-dimensional sub-comodule M 0 � M that contains a generating set for
kŒG� as a k-algebra. If we now write M 0 D V _, then V turns out to be a finite-
dimensional representation of G such that the induced map kŒGL.V /�! kŒG�

is surjective. See Milne Chapter 4 for the details of the proof. Altogether:

Theorem 1.2. Any affine algebraic group is linear: a closed subgroup of GL.V /
for some V .

Example 1.3. In the coordinates

GL2 D

( 
a b

c d

!ˇ̌̌̌
ˇ det ¤ 0

)
;

we have kŒGL2� D kŒa; b; c; d �Œdet�1�. The formulas that describe the coaction
of kŒGL2� on itself, i.e., the comultiplication �, correspond to the formulas that
describe matrix multiplication: e.g., a 7! a˝ aC b ˝ c.

Let V be the vector space of all 2 � 2 matrices. Then V _ D kha; b; c; d i

is a sub-comodule of kŒGL2� viewed as a comodule over itself. The fact that
it contains a generating set for kŒGL2� as an algebra reflects the fact that the
representation of GL2 on V by multiplication is faithful.

1.3.

The preceding discussion suggests that we should study specific algebraic groups
that embed into GLn. To this end, we transfer various definitions from group
theory to the world of algebraic groups.

A homomorphism of algebraic groups ' W H ! G is a morphism in Schk that
takes the multiplication on H to that on G. The kernel of ' is its fiber over the
identity of G. When the kernel is trivial, we say that H is an algebraic subgroup
of G. In this case, we claim that ' is a closed embedding. Indeed, one can check
that the Zariski closure of H.k/ in G.k/ is a group inside which H.k/ has finite
index, which forces H.k/ to coincide with the closure.

We say that an algebraic subgroup N � G is normal if and only if it is the
kernel of some homomorphism. In this case, the fppf sheaf quotient G=N is
represented by an algebraic group, called the quotient of G by N . The map
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G ! G=N is faithfully flat, or more simply, flat and surjective. Note that if
G=N is smooth, then flatness follows from the generic flatness theorem via a
homogeneity argument.

Having defined subgroups and quotients, we can now make sense of extensions
of algebraic groups, semidirect products, etc., and analogues of the isomorphism
theorems from group theory. See Milne Chapter 5 for details.

1.4.

In the first lecture, we mentioned the algebraic subgroup of upper-triangular
matrices B � GLn. Note that the derived subgroup of B.k/ is precisely U.k/,
where U � B is the algebraic subgroup of unipotent upper-triangular matrices.
Moreover, B.k/ ' T .k/ ⋉ U.k/, where T � B is the algebraic subgroup of
diagonal matrices.

In any algebraic group H , we define the derived subgroup ŒH;H� � H to
be the intersection of all normal subgroups of H with abelian quotient. We can
check that U D ŒB; B�, and that B ' T ⋉ U . With more work, we can check
that B is solvable in the sense that its derived series has finite length.

In general: A torus is an algebraic group isomorphic to a power of Gm. By
Milne Prop. 16.2, any connected, solvable affine algebraic group B decomposes
as T ⋉ ŒB; B�, where T is a torus. By Milne Thm. 16.27, any other maximal
torus of B is conjugate to T under B.k/.

We say that B is a Borel subgroup of an algebraic group G if and only if
it is maximal among connected, smooth, solvable algebraic subgroups of G.
Following Milne, a Borel pair or Killing pair of G is a choice of pair .B; T /,
where B is a Borel subgroup and T is any maximal torus of B . Later we will
sketch a proof of:

Theorem 1.4 (Cartan–Lie–Kolchin). In any connected, smooth, affine algebraic
group G, any two Borel pairs are conjugate under G.k/.

By this theorem, a connected, smooth, affine algebraic group is solvable, resp.
unipotent, if and only if it has a faithful representation whose image is contained
in the algebraic subgroup of arbitrary, resp. unipotent, upper-triangular matrices.

In any affine algebraic group G, the maximal connected, smooth normal
subgroup that is solvable, resp. unipotent, is called the radical, resp. unipotent
radical of G. We say that G is semisimple, resp. reductive, if and only if it has
trivial radical, resp. unipotent radical. Thus semisimple implies reductive. The
groups SLn are semisimple; the groups GLn are reductive but not semisimple.

Remark 1.5. The definition of a semisimple algebraic group matches up in
a precise sense with that of a semisimple Lie algebra.1 Recall that complex

1See https://math.stackexchange.com/q/1982569.

https://math.stackexchange.com/q/1982569
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semisimple Lie algebras are classified by Dynkin diagrams.
However, the definition of a reductive algebraic group does not match up in

this manner with that of a reductive Lie algebra. A better viewpoint is: The
reductive algebraic groups over C are precisely the complexifications of the
compact real Lie groups.2 By work of Chevalley, the classification of reductive
algebraic groups is the same over any (algebraically closed) field.

1.5.

Now we focus on affine algebraic groups over the algebraic closure of a finite
field: say, G over k D NFq. We want to construct finite groups that look like
GLn.Fq/, but starting from geometry over k rather than Fq itself, because to the
eye of an algebraic geometer, k is the simpler field.

Note that a scheme over k cannot have nontrivial Fq-points. What we are
actually doing is first choosing a scheme G1 over Fq such that G1 ˝ k D GLn,
then taking the set of Fq-points of G1. One choice gives GLn.Fq/. As it turns
out, another choice gives a different group called Un.Fq/.

If X , resp. X1, is a scheme over k, resp. Fq, and ˛ is an isomorphism X
�
�!

X1 ˝ k, then we say that .X1; ˛/ is a descent of X to Fq, or an Fq-rational
structure on X . If X is an algebraic group and its multiplication, identity, and
inversion maps descend to X1 along ˛, then we say that .X1; ˛/ is an Fq-form of
X . Abusing notation, we will omit mention of ˛ where convenient.

Remark 1.6. Most texts define algebraic groups in the setting of arbitrary fields.
For clarity, I will try to speak only of algebraic groups over fields that are
algebraically closed, and of forms of these groups over subfields.

Let �X W X ! X and �X1
W X1 ! X1 be the morphisms that fix the underlying

topological spaces and are given by f 7! f q on sections of the structure sheaves.
By Fermat’s Little Theorem, these are morphisms over Fq. Let F W X ! X be
the morphism over k given by the transport of �X1

˝ idk along ˛. We refer to F
as the (relative) Frobenius map on X induced by .X1; ˛/. By construction,

�X D .idX1
˝ �Spec k/ ı F D F ı .idX1

˝ �Spec k/:

We claim that we can recover X1 up to isomorphism from X and F . Indeed, if
X D SpecA, then we can take

X1 D SpecA1; where A1 D ff 2 A j F
�.f / D f q

g:

The general case follows from the affine one by gluing. Ultimately, Fq-rational
structures on X are classified by their Frobenius maps.

2See https://mathoverflow.net/q/299143.

https://mathoverflow.net/q/299143
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Note that an Fq-rational structure G1 of G is an Fq-form if and only if the
corresponding Frobenius map F satisfies F.g �h/ D F.g/ �F.h/ for all g; h 2 G.
More generally, if X is a k-scheme equipped with a G-action, then Frobenius
maps F on G and X are called compatible if and only if F.g �x/ D F.g/ �F.x/
for all x 2 X .

For an approach that starts from an abstract definition of relative Frobenius
maps, then recovers Fq-rational structures, see Section 4.1 of Geck’s book.

Example 1.7. Write Gm D Spec kŒt˙1�. There is a Frobenius map F W Gm !

Gm given by F �.t/ D tq, corresponding to the Fq-form arising from FqŒt
˙1�.

Now suppose that Fq does not contain i :D
p
�1. In particular, 2 ∤ q. Here

the algebra A1 D FqŒa; b�=.a
2 C b2 � 1/ is not isomorphic to FqŒt

˙1�, yet
we do have an isomorphism A1 ˝ k ' kŒt˙1� given by a D 1

2
.t C t�1/ and

b D 1
2i
.t � t�1/. What is the Frobenius map on Gm that corresponds to A1?

We claim that it is F defined by F �.t/ D t�q. Indeed, F �.a/ D aq, and since
iq D �i by hypothesis, F �.b/ D bq.

In fact, the group structure on Gm descends to SpecA1. The resulting Fq-form
of Gm is the circle group

U.1/ :D

( 
a �b

b a

!ˇ̌̌̌
ˇ a2
C b2

D 1

)
:

It generalizes to an Fq-form of GLn called the n � n general unitary group and
denoted GU.n/. Compare to Geck, §1.5.12 and §4.1.10(c).

1.6.

Suppose that F W X ! X is a Frobenius map corresponding to an Fq-rational
structure X1. It acts on X. NFq/, viewed as the set of sections Spec NFq ! X , by
postcomposition. We have bijections

XF . NFq/ ' X. NFq/
F
' X1.Fq/:

In Deligne–Lusztig theory, people write XF to denote the set XF . NFq/ as well as
the scheme.

Returning to algebraic groups, we see that by running over all possible choices
of q, G, and F W G ! G respecting the group structure on G, we get a large
supply of finite groups GF . Which are the most fundamental?

Recall that a finite group is simple if and only if it has no nontrivial proper
normal subgroup. Remarkably, many of the finite simple groups are closely
related to groups of the form GF , though not necessarily of that form themselves.

Theorem 1.8 (Classification). Every finite simple group is one of these:

(1) A cyclic group of prime order.
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(2) An alternating group An with n � 5.
(3) A finite simple “group of Lie type”.
(4) One of 26 (or 27) sporadic groups.

What is a finite group of Lie type? Unfortunately, there is no widely accepted
definition,3 but morally, these are the groups that are most closely related to the
groups GF . Class (1) could have been folded into class (3), but wasn’t (for good
reason), and the controversy over the number of sporadic groups is a similar
issue. The finite simple groups of Lie type themselves fall into subclasses:

(1) Chevalley groups

An.q/; Bn.q/ for n � 2; Cn.q/ for n � 3; Dn.q/ for n � 4;

En.q/ for n D 6; 7; 8; F4.q/; G2.q/:

(2) Steinberg groups

2An.q
2/ for n � 2; 2Dn.q

2/ for n � 4; 2E6.q
2/; 3D4.q

3/:

(3) Suzuki groups 2B2.2
2mC1/ and Ree groups 2G2.3

2mC1/.
(4) The Tits group 2F4.2

2mC1/, sometimes counted as the 27th sporadic.

Above:
The Chevalley and Steinberg groups are all central quotients either of certain

groups GF or kernels of such groups along determinant or spinor norm maps.
The Chevalley groups come from split Fq-forms, while the Steinberg groups
come from nonsplit forms—terms we will define later.

The Suzuki and Ree groups all take the form GF , where F is a Frobenius map
in a more general sense than we introduced earlier: Again, see Geck Chapter
4. They can also be constructed as fixed-point subgroups of groups GF under
exotic automorphisms, where F is a Frobenius map in our earlier sense, arising
from some q and some Fq-form of G. The Tits group also fits into this latter
construction.

The notation for the finite simple groups of Lie type hints that the associated
pairs .G; F / are very special. The group G is always almost-simple: This means
G is semisimple, noncommutative, and has no connected, smooth normal sub-
groups other than itself and f1g. In particular, via the classification of semisimple
Lie algebras, it comes from a connected Dynkin diagram. The map F then comes
from an automorphism of this Dynkin diagram.

Remark 1.9. Some authors refer to almost-simple algebraic groups as simple
algebraic groups. However, this notion is not quite analogous to that of a simple
(abstract) group.

3See https://mathoverflow.net/q/136880.

https://mathoverflow.net/q/136880

	1. 
	1.1. 
	1.2. 
	1.3. 
	1.4. 
	1.5. 
	1.6. 


