
4.

Today we review étale cohomology as a black-box formalism, which will also
serve as a warm-up for later lectures about the constructible derived category,
then use étale cohomology to construct virtual characters of GF from Deligne–
Lusztig varieties. Besides the original paper of Deligne–Lusztig, I will follow
Bonnafé’s book and notes I took from a WARTHOG course by Dudas.

4.1.

Throughout, Œd � means the degree-d shift functor on Z-graded vector spaces V ,
so that .V Œd �/i D V iCd for all i .

Fix a prime ` invertible in k. For our purposes, the `-adic étale cohomology
of a scheme X of finite type over k consists of Z-graded NQ`-vector spaces

H�.X/ D
M
i

Hi.X/ and H�c .X/ D
M
i

Hic.X/

satisfying these properties, where all maps of graded vector spaces are assumed
to be grading-preserving:

(1) Any map f W Y ! X induces

a pullback f � W H�.X/! H�.Y /:

If f is smooth of relative dimension d , then it induces

a Š-pushforward fŠ W H�c .Y /Œ2d �! Hic.X/:

Similarly, if f is proper, then it induces

a pushforward fŠ D f� W H�c .Y /! H�c .X/:

All of these constructions are functorial in f . In particular, if a group �
acts on X , then it acts on H�.X/ contravariantly. If � acts by proper maps,
then it also acts on H�c .X/ covariantly.

(2) There are functorial maps H�c .X/! H�.X/. They are isomorphisms for
proper X .

(3) For X connected and smooth of dimension n, there is a perfect pairing

H�.X/˝ H�c .X/! NQ`Œ�2n�:

called Poincaré duality. Note that the grading-preserving condition means
that it restricts to a perfect pairing between Hi.X/ and H2n�ic .X/.
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(4) For any closed embedding i W Z ! X with complement j W U ! X , we
have a long exact sequence

� � � ! H�c .U /
jŠ
�! H�c .X/! H�c .Z/! H�c .U /Œ1�! � � �

When X is proper, so that Z is also proper, the map H�c .X/! H�c .Z/ is
dual via item (2) and Poincaré to the map iŠ D i�.

(5) Pullback induces functorial isomorphisms

H�.X t Y / ' H�.X/˚ H�.Y / and H�.X � Y / ' H�.X/˝ H�.Y /;

and similarly with H�c in place of H� (by Poincaré).
(6) For the affine n-space An, we have

H�.An/ ' NQ` (in degree zero);

H�c .A
n/ ' NQ`Œ�2n� (by Poincaré):

(7) If d D dimX , then Hi.X/ D 0 for i > 2d and i < 0. If X is moreover
affine, then Hic.X/ D 0 for i < d .

We say that H�.X/ is the ordinary cohomology and H�c .X/ the compactly-
supported cohomology.

Now instead of schemes of finite type over k, consider the category of pairs
.X; F /, where X is of finite type over k and F W X ! X is a Frobenius map
corresponding to an Fq-rational structure on X , where morphisms of such pairs
are the k-morphisms that commute with the Frobenius maps.

Let NQ`.m/ be the m-fold Tate twist: the one-dimensional representation of
hF i given by F � 1 D q�m. Then:

(8) The maps in items (1)–(6) are F -equivariant after we replace Œ2m� with
Œ2m�.m/.

(9) For smooth X , we have the Lefschetz fixed-point formula

jXF
j D

X
i

tr.F j Hic.X//:

Note that the right-hand side uses Hic , not Hi .

Example 4.1. The formula for the `-adic cohomology of affine space implies
the formula for that of projective space, via Lefschetz. First, use the partition
Pn D An t Pn�1 and induction to show that Hi.Pn/ vanishes for i odd and that
F acts on H2j .Pn/ by qj . Next, since jPn.Fq/j D 1C q C � � � C qn, Lefschetz
forces dim H2j D 1 for 0 � j � n.
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4.2.

Let G be a connected, reductive algebraic group over k D NFq with Weyl group
W , and let F W G ! G be a Frobenius map. Last time we defined the varieties
Xw and QXw . Let us now present a slightly different viewpoint on Xw .

Recall that B is the flag variety of G, isomorphic to G=B for any choice of
Borel B , but itself independent of that choice. Let Ow � B � B be the G-orbit
indexed by w 2 W . Explicitly, if we fix a Borel B , then the k-points of Ow are
the pairs .gB; gwB/ for g 2 G.k/. We see that Xw can be defined through a
cartesian square:

Xw B

Ow B � B

F � id

It turns out that Ow is smooth of dimension `.w/ C dimB and intersects the
image of id�F , i.e., the graph of F , transversely: The latter claim can be verified
by calculating differentials. Thus Xw is a smooth variety of dimension `.w/,
where `.w/ D dim .BwB/=B .

Now suppose that .B; T / is an F -stable Borel pair, and set U D ŒB; B�.
Recall that up to a choice of section W ! NG.T /, we can define a scheme
QXw � G=U , such that the right T -action on G=U restricts to a T wF -action on
QXw , and the (free) quotient by T wF defines a finite cover �w W QXw ! Xw . We

have a commutative square:

QXw G=U

Xw G=B ' B

�w

We draw the following conclusions:

(1) The map �w is finite étale. Thus QXw is also a smooth variety of dimension
`.w/.

(2) The compactly-supported cohomology H�c . QXw/ forms a graded .GF ; T wF /-
bimodule. In particular, if we write V Œ�� for the �-isotypic component of
a representation V of T wF , then the NQ`-vector space

Rw;� D RG
F

TwF
.�/ :D H�c . QXw/Œ��

is a graded representation of GF for any character � W T wF ! NQ�
`

.
(3) Pushforward defines a map

�w;Š D �w;� W H�c . QXw/! H�c .Xw/:
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With more work, one can show that it factors through an isomorphism
RGF
TwF

.1/ D H�c . QXw/
TwF

�
�! H�c .Xw/.

We refer to the operation RGF
TwF

as Deligne–Lusztig induction from T wF to GF .

4.3.

In their original paper, Deligne–Lusztig focused on the virtual character of GF

defined by

Rw;� D R
GF

TwF
.�/ :D

X
i

.�1/iHic. QXw/Œ��:

Indeed this alternating sum resembles that appearing in the Lefschetz formula,
which suggests that Rw;� is related to point-counting, hence more tractable than
Rw;� itself for general w and � .

Note that if F acts nontrivially on W , then Xw and QXw need not be stable
under the Frobenius maps on G=B and G=U induced by F . Nonetheless, there
must be some ı � 1 such that F ı acts trivially on W . By Geck Exercise 4.7.3(a),
F ı is also a Frobenius map on G. (If F corresponds to an Fq-rational structure,
then F ı corresponds to an Fqı -rational structure.) Since Ow and the graph of F
are both F ı-stable in B �B, we deduce from the first cartesian square above that
Xw is F ı-stable as well.

Whether or not QXw is F ı-stable depends on how we choose the section
w 7! Pw W W ! NG.T /. Observe that W D W F ı D N

GF
ı .T F

ı

/=T F
ı

. Thus,
for all w, we can choose Pw 2 N

GF
ı .T F

ı

/, and in this case, QXw is F ı-stable.

4.4.

Take G D SL2 and F the standard Frobenius, so that we can write W D fe; sg.
Since F acts trivially on W , the varieties Xe and Xs are F -stable.

We saw last time that Xe is a set of q C 1 points and Xs D P1 n Xe. In
particular, Xs is affine of dimension 1, so we know that H0

c.Xs/ D 0 and the
remaining compactly-supported cohomology of Xs is supported in degrees 1 and
2. Similarly, the compactly-supported cohomology of Xe is supported in degree
0, where it is a vector space of dimension q C 1.

The long exact sequence from the inclusion j W Xs ! P1 gives

� � � ! 0 D H1c.Xe/! H2c.Xs/
jŠ
�! H2c.P

1/! H2c.Xe/ D 0! � � �

from which H2c.Xs/ ' H2c.P1/ ' NQ`.�1/, and

� � � ! 0 D H0c.Xs/
jŠ
�! H0c.P

1/! H0c.Xe/! H1c.Xs/
jŠ
�! H1c.P

1/ D 0! � � �

from which H1c.Xs/ ' H0c.Xe/=H0c.P1/ ' NQ
˚q

`
. In particular,

tr.F j H1c.Xs// D tr.F j H2c.Xs// D q:
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This agrees with the sanity check from Lefschetz: jXF
s j D 0 by construction,

matching 0 � q C q D 0.
Note that H1c.Xs/ and H2c.Xs/ individually define representations of GF . With

more work, one can show that their respective characters are St, the Steinberg
character, and 1, the trivial character, in the notation from the previous set of
notes. Unfortunately, this means that Rs;1 D H�.Xs/ fails to see anything new:
We have only reproduced the principal series from last time. Even so, we see
something interesting on virtual characters:

Re;1 D 1C St;

Rs;1 D 1 � St;

so under the pairing .�;�/GF on class functions induced by the HomGF -pairing
on isomorphism classes of representations, we have .Re;1; Rs;1/GF D 1�1 D 0:
i.e., Re;1 and Rs;1 are orthogonal.
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