
3.

Throughout, G is a connected, smooth, affine algebraic group over k D NFq with
a Frobenius map F W G ! G corresponding to an Fq-form, and .B; T / is an
F -stable Borel pair.

Today we explain how Deligne–Lusztig found a generalization of the induction
functor IndG

F

BF
depending on algebraic geometry.

3.1.

As motivation, we work out the role of the principal series in the character table of
SL2.F3/. Take G D SL2 with the standard Frobenius F , so that GF D SL2.F3/.
Take B upper-triangular, T diagonal, and U D ŒB; B�, so that B; T; U are all
F -stable. Let i D

p
�1, so that F9 D F3Œi �.

3.1.1.

To determine the conjugacy classes of GF , we first work over k, then descend.
By Jordan, the conjugacy classes of G.k/ have representatives�

a
a�1

�
, possibly double-counted by a 2 k�;

�
1 1
1

�
;

�
�1 1
�1

�
:

The conjugacy class of
�
a
a�1

�
intersects GF if and only if aCa�1 2 F3. Either

a 2 F3 or a is quadratic over F3. In the former case, a D ˙1. In the latter case,
a D x C yi for some x; y 2 F3 with y ¤ 0, and only a D ˙i works.

Next we have to check which of these conjugacy classes, upon restriction to
GF , breaks into smaller conjugacy classes. It turns out that this happens for the
classes whose representatives are single Jordan blocks: They break into four
classes with representatives�

1 1
1

�
;

�
1 �1
1

�
;

�
�1 �1
�1

�
;

�
�1 1
�1

�
:

For instance, to show that the first two are not conjugate under GF , observe that
the conjugating matrix would normalize B , so by a theorem from last time, it
would belong to BF , at which point we can check by direct computation.

It turns out that the other conjugacy classes do not break apart upon restriction.
To see this, we list out all of the classes we have, compute the orders of their
centralizers in GF , then verify that the reciprocals add up to 1.

g
�
1
1

� �
�1
�1

� �
�1

1

� �
1 1
1

� �
1 �1
1

� �
�1 �1
�1

� �
�1 1
�1

�
ZGF .g/ GF GF NGF .T

F / BF BF BF BF

jZGF .g/j 24 24 4 6 6 6 6

Note that the properties Z.GF / D T F and ZGF .U F / D BF are special to
this base field. Both fail when we replace F3 with Fq for general q, as we will
discuss later.
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3.1.2.

By general character theory, we deduce that GF has 7 irreducible characters.
On Problem Set 1, you will show that the summands of the principal series

representations I� D IndG
F

BF
.�/ contribute 4 of them. The possibilities for the

character � W T F ! C� are the trivial character 1 and an order-2 character ˛.
It turns out that I1 ' 1˚ St, where 1 is the trivial character and St D StGF is
an irreducible known as the Steinberg character; and that I˛ ' �C.˛/˚ ��.˛/,
where �˙.˛/ are also irreducibles of GF . We get this partial character table
(Table 11.1 in Bonnafé):�

1
1

� �
�1
�1

� �
�1

1

� �
1 1
1

� �
1 �1
1

� �
�1 �1
�1

� �
�1 1
�1

�
I1 4 4 0 1 1 1 1

1 1 1 1 1 1 1 1

St 3 3 �1 0 0 0 0

I˛ 4 �4 0 1 1 �1 �1

�C.˛/ 2 �2 0 � N! �! N! !

��.˛/ 2 �2 0 �! � N! ! N!

Above, ! is a primitive cube root of unity and N! D !2. (The characters of I1; I˛
are easier to determine than those of their irreducibles.) The point is that three
irreducibles are missing.

3.2.

For general G and Fq: The vector space I� has commuting actions of GF and

H� D H
GF

TF
.�/ :D EndGF .I�/:

It turns out that CGF D EndH� .I�/, so the double centralizer theorem gives an
isomorphism of .GF ;H�/-bimodules

I� '
M
M

�M ˝M;

where M runs over simple H� -modules up to isomorphism and �M 2 IrrGF for
all M . By Mackey, we have an isomorphism of vector spaces

H� '

M
w2W F

HomTF .
w�; �/;

where dim HomTF .
w�; �/ D jfw j w� D � on T F gj. In particular:

� I�w ' I� for all w 2 W F .
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� H� is largest when � D 1. It turns out that H� ' CW F .
� H� is one-dimensional when � is sufficiently generic.

When G D SL2 and F is the standard Frobenius, W F D W D S2. When q is
large enough, generic characters predominate. More precisely, it turns out that
for q odd, the principal series contribute 2C2C q�3

2
of the irreducible characters

of GF . By comparison, here are the conjugacy classes of GF for q odd, from
notes of Paul Garrett:

(1) 2 central conjugacy classes.
(2) q�3

2
non-central diagonal conjugacy classes.

(3) q�1

2
non-diagonal semisimple conjugacy classes.

(4) 4 non-semisimple conjugacy classes.

3.3.

The key idea is to realize that there are other “finite maximal tori” in GF besides
T F , whose characters we can also use to build representations of GF .

Going back to G D SL2 over k D NFq with the standard Frobenius, recall that
G=B D P1. We have

I1 D ffunctions on GF =BF g D ffunctions on .G=B/F , i.e., P1.Fq/g:

The open complement G=B n .G=B/F , whose k-points form P1.k/ n P1.Fq/, is
still stable under left multiplication by GF . However, it is not clear what sort of
function space would give a finite-dimensional representation of GF .

Drinfeld observed that instead of a vector space of functions, one might use
the vector spaces afforded by a cohomology theory. He worked out the story for
SL2 and told his idea to Deligne–Lusztig. Then the latter worked out the story
for general G.

To motivate the geometry in the general situation, first observe that

for G D SL2 and F standard;

(
P1.Fq/D fgB j F.g/B D gBg;

P1.k/ n P1.Fq/D fgB j F.g/B ¤ gBg:

For a general reductive algebraic group G, recall that the Weyl group W D

NG.T /=T is independent of the maximal torus T � G, since all such tori are
conjugate. The G.k/-orbits on .G=B �G=B/.k/ are indexed by W via

G.k/n.G=B �G=B/.k/ ' B.k/nG.k/=B.k/ ' W:

We say that .yB; xB/ is in relative position w 2 W if and only if it goes
to w under this bijection, meaning By�1xB D BwB . In this case we write
yB

w
�! xB . For general reductive G, let Xw � G=B be the closed subvariety

Xw D fgB 2 G=B j F.g/B
w
�! gBg

D fgB 2 G=B j g�1F.g/ 2 BwBg:
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Example 3.1. For any G (and choice of F -stable Borel B � G), the identity
element e 2 W yields Xe D .G=B/F D GF =BF .

Example 3.2. For G D SL2 and F standard, we can write W D fe; sg. Then
Xs D G=B n .G=B/

F .

Drinfeld actually introduced a richer construction. Write U D ŒB; B�, so that
B D T ⋉ U . Recall that here,M

� WBF!TF!C�

I� D ffunctions on GF =U F
g:

The G-action on G=U from the left commutes with the T -action from the right
by gU � t D gtU . These actions descend to commuting GF - and T F -actions on
GF =U F . The projection map GF =U F ! GF =BF is the quotient by T F .

Fix a choice of section w 7! Pw W W ! NG.T /=T . For general w 2 W , let
QXw � G=U be the closed subvariety

QXw D fgU 2 G=U j g
�1F.g/ 2 U PwU g:

This still has a left GF -action, but not necessarily a right T F -action. Instead, a
new group appears.

To explain: If G is connected, H � G is F -stable, and g 2 G.k/ normalizes
H , then Geck Exercise 4.7.5 shows that the map gF W H ! H defined by
ŒgF �.h/ D gF.h/g�1 is another Frobenius map onH . (The connectedness of G
is only used to apply Lang’s theorem to g.) In particular, each element w 2 W
gives a Frobenius map wF W T ! T .

Lemma 3.3. The finite group T wF acts freely on QXw from the right. The map
QXw ! Xw is the quotient by T wF .

Proof sketch. We prove the first statement at the level of points. If gU 2 QXw
and t 2 T wF , then F.t/ D Pw�1t Pw, so

.gt/�1F.gt/ 2 t�1.U PwU/F.t/

D t�1.U PwU/. Pw�1t Pw/

D Ut�1 Pw. Pw�1t Pw/U

D U PwU:

So the action is well-defined. It is free because the T -action on G=U is free.

Example 3.4. For any G (and F -stable B with U D ŒB; B�), taking the lift
Pe D 1 yields QXe D GF =U F . If we lift e to a different element of T , then we get
an isomorphic but different subvariety of G=U .
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Example 3.5. On Problem Set 1, you will compute QXs for G D SL2 and F
standard and Ps D

�
�1

1

�
. It turns out to be a curve inside G=U ' A2 n f0g,

sometimes called the Drinfeld curve.

Remark 3.6. There is a particularly nice section fromW toNG.T /=T , introduced
by Tits in his paper “Normalisateurs de tores. I. Groupes de Coxeter etendus”.
We may return to it later.

Remark 3.7. Here is a perspective suggested by Geordie Williamson on Math-
Overflow.1 For G D SL2, the inclusion of .G=B/F D P1.Fq/ into .G=B/.k/ D
P1.k/ is analogous to the inclusion of RP1 into CP1. In this sense, the GF -
action on Xs is analogous to the SL2.R/-action on the open upper and lower
half-planes in C. Recall that the interaction between the upper half-plane and its
real boundary plays an important role in the theory of modular forms, and hence,
the representation theory of SL2.R/ and its subgroups.

Some issues with this analogy: Xs seems to be analogous to a union of two
half-planes rather than a single one. Moreover, Xs has no analogue of the
homogeneous description of the upper half-plane as SL2.R/=SO2.R/.

1See https://mathoverflow.net/a/188658.

https://mathoverflow.net/a/188658

	3. 
	3.1. 
	3.1.1. 
	3.1.2. 

	3.2. 
	3.3. 


