
12.

We introduce the notion of categorification. Then we introduce constructible
sheaves, and discuss some naive attempts to categorify the Iwahori–Hecke algebra
using them.

Throughout this course, the main reference on sheaves and their technical
details will be Achar’s book, supplemented by SGA and the texts by Freitag–
Kiehl, Kiehl–Weissauer, and Milne. As for categorification of the Hecke algebra,
a possible reference is Lecture 24 in Romanov–Williamson’s lecture notes.

12.1.

Categorification of an additive group A means constructing an additive category
C such that A is the Grothendieck group of C in an appropriate sense.

There are several different kinds of additive category, each with its own notion
of Grothendieck group. In each case, we assume that C admits a small skeleton;
the Grothendieck group is generated by the isomorphism classes of objects in
the skeleton modulo certain relations.

(1) For any C, the split Grothendieck group ŒC�˚ is given by the relations

Œc� D Œc0�C Œc00� for any c ' c0 ˚ c00:

(2) For C abelian, the usual Grothendieck group ŒC� is given by the relations

Œc� D Œc0�C Œc00� for any exact sequence 0! c0 ! c ! c00 ! 0:

(3) For C triangulated, the triangulated Grothendieck group ŒC�4 is given by
the relations

Œc� D Œc0�C Œc00� for any exact triangle c0 ! c ! c00 ! c0Œ1�:

Note that for any c, the triangle c ! 0 ! cŒ1� ! cŒ1� is exact, giving
ŒcŒ1�� D �Œc�. That is, the shift Œ1� must decategorify to scaling by �1.

It appears to be well-known that if C is abelian and Db.C/ is the bounded derived
category of complexes of objects in C, then ŒDb.C/�4 D ŒC�. Seemingly less-
known, but important for our goals, is a result recorded by David Rose in “A
Note on the Grothendieck Group. . . ” Below, for any additive C, let Kb.C/ be the
bounded homotopy category of complexes of objects in C.

Theorem 12.1 (Rose). We have ŒKb.C/�4 D ŒC�˚.

Remark 12.2. For C abelian, ŒC�˚ is usually larger than ŒC�. This corresponds to
the fact that a short exact sequence of complexes in C will give rise to an exact
triangle in Db.C/ but not necessarily in Kb.C/.1

1Thank-you to David B. for spotting an error here during the lecture.
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Categorification of a ring R begins with categorification of the underlying
additive group to some category C. We then need to construct some monoidal
product � on C that distributes over the direct sum˚, such that the relations

Œc� D Œc0�Œc00� for any c ' c0 � c00

define the multiplication on R.
Our goal is to build a categorification of the Iwahori–Hecke algebra HW .x/

involving geometric objects. Recall that for suitable G;F;B , we have

HW .x/jx!q1=2 ' EndAGF .IndAGF

ABF .1//; where A D ZŒq˙1=2�;

and that the right-hand side can be rewritten in terms of GF -invariant, A-valued
functions on .G=B � G=B/F . It turns out that such functions arise from G-
equivariant sheaves on G=B � G=B in a precise sense. Moreover, the sheaves
involved give rise to a cohomology theory that recovers the notion of étale
cohomology discussed earlier. However, getting the “right” sheaves to appear,
with the “right” cohomology, is much trickier than one might expect.

12.2.

Fix an algebraically closed field k and a scheme X of finite type over k. Recall
that étale cohomology behaves like singular cohomology with locally constant
coefficients. So we might consider étale sheaves that are locally constant on
X : i.e., sheaves that trivialize after pullback along a finite étale cover of X . It
turns out that this sometimes gives more sheaves than expected, and even when
it doesn’t, it gives the wrong cohomology when the sheaves have non-torsion
coefficients.

To explain further: In analogy with classical topology, our sheaf theory should
provide a (functorial) equivalence between locally constant sheaves on X and
representations of some kind of fundamental group �1.X/. In algebraic geometry,
the usual choice is the étale fundamental group �ét

1 .X/, essentially because when
we take X D Spec k1 for a field k1, it recovers the absolute Galois group of
k1. But the étale fundamental group carries an intrinsic topology: the profinite
topology. Finite sets with a �ét

1 .X/-action correspond to finite étale covers of X ,
so continuous finite-rank representations of �ét

1 .X/ correspond to étale-locally
constant sheaves on X .

Example 12.3. In the case where X is a rational curve with a node, �ét
1 .X/ is

procyclic, hence compact. At the same time, any étale-locally constant sheaf
of rank 1 over X is determined by an arbitrary nonzero scalar describing the
gluing at the node. If the ring of coefficients is not compact, then there are more
possible scalars than representations of �ét

1 .X/.
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Example 12.4. In the case where X D Spec k1 case, the issue is not with the
sheaves, but with their cohomology. It turns out that the cohomology of a locally
constant sheaf should be the group cohomology of the corresponding Gal.k=k1/-
module. But one can show that for any profinite group � , written as an inverse
limit of finite quotients � D lim

 �i
�=�i , and any continuous �-module M , we

have an isomorphism of cochain groups

C �.�;M/ ' lim
�!

i

C �.�=�i ;M
�i /:(12.1)

Since the �=�i are finite, the right-hand side will fail to detect the non-torsion
part of M . See SGA 4, Exposé IX or §12 of Freitag–Kiehl’s book for related
discussions of this issue.

Remark 12.5. Why doesn’t Achar encounter these issues in Chapter 2 of his
book? There, he isn’t working in the étale topology at all: He is taking k D C
and working in the analytic topology on the underlying topological spaces.

12.3.

There are two ways to fix the issues above.

12.3.1. The old way

One avoids defining a constructible sheaf as an étale-locally constant sheaf,
except when special conditions hold on the coefficient ring as well as the sheaf
itself. Namely, the ring must be finite and self-injective, like Z=`mZ, and the
sheaf Tor-finite: See Achar, pp. 221–222.

One instead defines the constructible derived category in an indirect way,
using an inverse limit of the categories arising from the special cases. Then one
constructs a t-structure on the result,2 and defines constructible sheaves to be
the objects of the heart of this t-structure. The details are laid out in Definition
5.1.14 of Achar’s book.

12.3.2. The new way

Due to Bhatt–Scholze. One replaces the (small) étale site of X with the pro-étale
site of X , whose objects are so-called weakly-étale schemes over X and whose
covers are the fpqc covers. The étale site embeds into the pro-étale site with
a right adjoint. In general, the latter is much larger, in that its typical objects
involve non-noetherian constructions even when X is noetherian.

When X is the nodal curve, the pro-étale fundamental group is just Z, fixing
the issue seen earlier. In general, the pro-étale fundamental group merely has the
étale one as its profinite completion.

2To be discussed next week.
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When X D Spec k1, the groups are the same. Profinite Gal.k=k1/-sets
correspond to objects of the pro-étale site, so continuous representations of
Gal.k=k1/, not necessarily of finite rank, correspond to pro-étale-locally constant
sheaves. But due to the existence of more covers, the pro-étale analogue of (12.1)
does not hold. Instead, the pro-étale cohomology of locally constant sheaves
behaves like the naïve expectation, even with arbitrary coefficients, as long as
the characteristic of k is invertible in the coefficient ring.

The current best reference for the pro-étale topology is its chapter in the Stacks
Project, which fixes many minor errors in the original text by Bhatt–Scholze.

12.3.3.

We will adopt the old way, going forward, because the enhancements that we
actually need—mixedness and equivariance—only seem to be written down
carefully in the old way at present. Indeed, providing an accurate summary of
these enhancements takes up Chapters 5 and 6 of Achar’s book.

Suppose that k is a finite self-injective ring. An étale sheaf of k-modules F over
X is lisse if and only if it is locally constant of finite type. More generally, if S is
a finite stratification of X by constructible subschemes,3 then F is constructible
with respect to S if and only if its restriction to each stratum is lisse. We say
that it is constructible if and only if it is constructible with respect to some
S. Let Shv.X; k/ be the (abelian, k-linear) category of constructible sheaves of
k-modules.

Now suppose that o is the ring of integers in a finite extension of Q`, where
` is a prime different from the characteristic of k. Let m � o be the maximal
ideal. Let Shv.X; o/ be the abelian, o-linear category of constructible o-sheaves
on X in the sense of Achar Definition 5.1.16. For all j > 0, there is a functor
Shv.X; o/ ! D�0.Shv.X; o=mj //, where D�0 means the full subcategory of
the derived category of objects with no cohomology in positive degrees. These
functors more-or-less characterize Shv.X; o/: See Achar pp. 222–223.

Finally, let Shv.X; NQ`/ be the abelian, NQ`-linear category of constructible
NQ`-sheaves on X in the sense of Achar Definition 5.1.16. We will just call
them sheaves when convenient. For any ring o as above, extension of scalars
induces a functor Shv.X; o/! Shv.X; NQ`/. Again, these functors more-or-less
characterize Shv.X; NQ`/.

The facts we need about Shv.X;k/ when k 2 fk; o; NQ`g:

(1) A map p W Y ! X of schemes over k that sends strata onto strata induces
a pullback p� W Shv.X;k/ ! Shv.Y;k/. In particular, if j W U ! X is

3Technically, a stratification is stricter than a partition. See Achar Definition 2.3.1.
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an étale open, then for any object F of Shv.X;k/, we set

F.U / D Hom.kU ; j
�F/

When k D k, this is precisely the space of sections of F over U in the
usual sense.

(2) Set pt D Spec k. Then all stratifications of pt are the same, and Shv.pt; k/
is equivalent to the category of k-modules of finite rank. For any object F
of Shv.X;k/ and any Nx 2 X.k/ viewed as a map Nx W pt! X , we define
the stalk of F at Nx to be

F Nx D Nx�F D lim
 �

étale open U ! X
Nx2U.k/

F.U /;

viewed as a k-module.
(3) The usual tensor product induces a monoidal product˝ on Shv.X; k/. The

monoidal unit is the constant sheaf

kX D a
�k;

where a W X ! pt is the unique map.

Moreover, all of these constructions generalize to the setting where we replace k
with a subfield k1, and X with a k1-structure/form X1:

(4) Pullback induces a functor Shv.X1;k/ ! Shv.X;k/. In particular, if
we set pt1 D Spec k1, then Shv.pt1;k/ is equivalent to the category of
kGal.k=k1/-modules of finite rank over k, and Shv.pt1; k/! Shv.pt; k/
is the forgetful functor.

In the rest of this lecture, we work only with k D NQ`. Hence we will abbreviate
by writing Shv.X/ D Shv.X; NQ`/.

12.4.

If H is an algebraic group over k, acting on X with finitely many orbits, then it
is natural to study sheaves constructible with respect to the stratification of X
by H -orbits. In particular, if G is a reductive algebraic group over k and B is
its flag variety, then we might take X D B � B and H D G. Alternatively, if
B � G is a fixed Borel, then we might take X D G and H D B � B .

How can we recover the Iwahori–Hecke algebra HW D HW .x/ from sheaves
in this setup? Recall that when we identify HW .q

1=2/ with GF -invariant func-
tions on BF � BF , the rescaled standard basis elements q`.w/=2�w correspond to
the indicator functions on GF -orbits.

The sheafy analogue of an indicator function is the extension-by-zero of a
constant sheaf.4 This leads to a naive guess: Since Shv.X/ is abelian, we can

4Another notion to be discussed next week.
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form either of the Grothendieck groups ŒShv.X/�˚ or ŒShv.X/�. ForX D B�B,
we might hope that the extensions-by-zero to X of the constant sheaves on its
G-orbits decategorify to a rescaled standard basis of HW .x/.

Unfortunately, this can’t work. Take G D GL1 (or any other torus). Then
B D pt, so X D pt. By item (3) above, ŒShv.pt/�˚ D ŒShv.pt/� D Z, whereas
we want HW .x/ D ZŒx˙1�.

12.5.

In trying to fix this issue, we might set k D NFq and try to specialize x to a
square root of q, like we did to compare the Hecke algebra to functions on
BF � BF . However, we immediately realize that k itself does not see q, but only
the underlying prime of which q is a power. This suggests working with sheaves
equipped with extra structure coming from an Fq-structure on X , and using this
structure to enrich our Grothendieck groups.

Henceforth, k D NFq, so that ` ∤ q. Suppose that X D X1 ˝ k and F D F1jX

for some scheme X1 over Fq and sheaf F1 over X1. We will describe the
fonctions-faisceaux (or function-sheaf) dictionary, which sends F to a collection
of trace of Frobenius functions

tF D tF ;d W X1.Fqd /! NQ` for d � 1:

Theorem 1.1.2 in Laumon’s “Transformation de Fourier. . . ” states a precise
sense in which (under certain conditions) the functions tF ;d determine the class
of F in a certain Grothendieck group.

Recall that given Z over Fq, the absolute Frobenius map �Z W Z ! Z is the
map over Fq that fixes the underlying topological space and sends f 7! f q on
sections of the structure sheaf OZ . We also worked with the relative Frobenius
maps F D �X1

˝ id W X ! X , which are maps over k. It turns out that if
F D F1jX , then there is an isomorphism

F �F �
�! F(12.2)

induced from F1 via étale descent. The rough idea is that F1 is built up from
étale algebraic spaces E1 ! X1. The relative Frobenius of E D E1 ˝ k, given
by �E1

˝ id, factors through an isomorphism E
�
�! .�X1

˝ id/�E D F �E, and
the inverse isomorphisms F �E

�
�! E give rise to (12.2). An arbitrary sheaf F

equipped with an isomorphism of the form (12.2) is called a Weil sheaf with
respect to F W X ! X .

Let � D �Spec k in what follows. We can rewrite (12.2) in terms of ��1 through
the following trick. First, observe that

�X D .idX1
˝ �/ ı F D F ı .idX1

˝ �/:



7

Next, it turns out that ��X ' idShv.X/ as functors, roughly because �X pulls back
to �U for any étale open U ! X : See Lemma Achar 5.3.6. So we can rewrite
(12.2) as an isomorphism

.idX1
˝ ��1/�F �

�! F :(12.3)

We can also view ��1 as a pro-generator of Gal.k=Fq/, sometimes called the
geometric Frobenius. The isomorphism (12.3) forms a descent datum for F from
X to X1 if and only if it extends to a system of compatible isomorphisms for
each element of Gal.k=Fq/. We will focus on the Weil sheaves for which this
occurs: i.e., those that take the form F1jX for some F1 on X1.

Example 12.6. Via property (4) from §12.3.3, a sheaf on pt D Spec k that
descends to pt1 D Spec Fq is equivalent to a continuous, finite-dimensional
representation of Gal.k=Fq/ over NQ`. In particular, a 1-dimensional representa-
tion is equivalent to a homomorphism Gal.k=Fq/! NQ�` . Continuity forces the
image of ��1 under such a homomorphism to be an element of NZ�

`
, the maximal

compact subgroup of NQ�
`

.

We want to use (12.2) to define a Frobenius action on stalks. It turns out that
for any Nx 2 X.k/, we have an identification

FF . Nx/ D lim
�!

U3F . Nx/

F.U / D lim
�!
V 3 Nx

F.F.V // D .F �F/ Nx:

One can check that if Nx factors through a point x 2 X1.Fqd /, then F d fixes Nx.
So for such Nx and x, we obtain a morphism of NQ`-vector spaces

F d
W F Nx D F �F Nx

(12.2)
���! F Nx:

The trace of this morphism only depends on x, so we can set

tF ;d .x/ D tr.F d
j F Nx/:

Remark 12.7. Above, the action of F on X.k/ can be rewritten in terms of ��1,
as Nx 7! .idX1

˝ �/ ı Nx ı ��1. Similarly, the action of F d on F Nx can be rewritten
in terms of ��d : hence, in terms of Gal.k=Fqd /.

In the setting where X D Spec Fqd and we replace F with a lisse sheaf of
k-modules, for some finite self-injective ring k, the map F 7! FEx induces the
equivalence between lisse sheaves of k-modules and continuous representations
of �ét

1 .X; Nx/ D Gal.k=Fqd / over k.
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12.6.

The above discussion gives the impression that we should replace Shv.X/ with
Shv.X1/, viewed as a full subcategory of the category of Weil sheaves on X .

Unfortunately, we have now overshot the size of the Grothendieck groups.
Again taking G to be a torus, so that X D pt, we find from Example 12.6 that
ŒShv.pt1/�˚ D ŒShv.pt1/� D ZŒ NZ�

`
�.

So we should only use a certain subcategory of Shv.X1/. Based on our
example, we might try to restrict the possible eigenvalues that occur in the action
of F d on F Nx discussed above. For instance, we could restrict the eigenvalues to
be powers of q1=2.

But more issues arise when we try to define a monoidal product � that cor-
responds to the multiplication in HW . From previous lectures, we expect � to
arise from some kind of convolution on X that should preserve our subcategory.
A priori, it is not clear how to ensure that restrictions on eigenvalues would be
preserved by this convolution.

Finally, we also want our subcategory to contain objects that, under the
function-sheaf dictionary, recover the two bases that we have studied in de-
tail: the standard basis .�w/w and the Kazhdan–Lusztig basis .cw/w . In future
lectures, we will find that the approach that works is:

(1) First, categorify HW to a merely additive category C preserved by a con-
volution �, the element x to a new kind of shift functor h1i, and the basis
.cw/w to a collection of objects that generate this category under ˚ and
h1i.

(2) Next, form objects in the triangulated category Kb.C/ that categorify the
standard basis .�w/w .

We can give a preview of how h1i arises.
Recall that the Tate twist NQ`.1/ is the 1-dimensional vector space on which

F acts by q�1 2 NZ�
`

. (Here we use the hypothesis that ` ∤ q.) Fixing a square
root of q allows us to define a half Tate twist NQ`.

1
2
/, on which F acts by q�1=2.

We will construct C inside a larger triangulated category called the constructible
derived category, then set h1i D .�/˝ NQ`.

1
2
/Œ1�.
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