
2.

Today we discuss Borel subgroups of reductive groups and the corresponding
quotients.

2.1.

We have discussed how an algebraic groupG over NFq , equipped with a Frobenius
map F W G ! G, gives rise to a finite group GF . When G is reductive, the
structure of G, resp. GF , closely resembles that of GLn, resp. GLn.Fq/.

Even earlier, we discussed the Bruhat decomposition. For now, let k be an
arbitrary algebraically closed field. Let B � GLn be the subgroup of upper-
triangular matrices, and for all w 2 Sn, let Pw 2 GLn be the permutation matrix
of w. The Bruhat decomposition on k-points is

GLn.k/ D
a
w2Sn

B.k/ PwB.k/:

Its proof is similar to how we used row reduction to establish the Schubert cell
decomposition of any Grassmannian. Namely, it suffices to show:

Theorem 2.1. The coset space B.k/nGLn.k/ is the disjoint union of the subsets
B.k/n.B.k/ PwB.k// for w 2 Sn.

Proof. We can identify cosets of B.k/ with (complete) flags in kn via the map
B.k/g 7! EV � g, where EV D .Vi/i is the standard flag in row notation. The rows
of g define an ordered basis .vi/i such that Vi � g D hv1; : : : ; vii for all i .

So apply row reduction to g. The result is an upper-triangular matrix b 2 B.k/.
From the algorithm, we also get a permutation w�1 2 Sn that only depends on
the flag EV � g: the composition of the row swaps (from the left) used to reduce g
to b. We have EV � g D EV � Pwb.

Note that the expression B PwB can be reduced even further. For instance,
we can always take b unipotent in the proof above. Another way to see this:
Recall that B D T U , where T , resp. U is the subgroup of diagonal, resp.
unipotent matrices, and observe that permutation matrices normalize T , meaning
PwT D T Pw for all w.

Something stronger is true. For any algebraic groups H � G, Milne Prop.
1.83 exhibits an algebraic group NG.H/ such that NG.H/.R/ D NG.R/.H.R//
for any k-algebra R. It turns out that the connected components NGLn

.T / are
precisely the cosets PwT for w 2 Sn. This suggests how Bruhat decomposition
ought to generalize beyond GLn.

Define the Weyl group of a maximal torus T � G to be the normalizer
W D W.G; T / :D NG.T /=T . Note that for any w 2 W , and any algebraic
subgroup B � G containing T , the notation wB is unambiguous.
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Theorem 2.2. Suppose thatG is a reductive algebraic group. Let B D T ⋉U �
G be a Borel subgroup, where U D ŒB; B�. Then B.k/nG.k/ is the disjoint
union of the subsets B.k/n.B.k/wB.k// for w 2 W.G; T /.

2.2.

As in the first lecture, we switch notation from left-hand quotients back to right-
hand quotients. The set G.k/=B.k/ is precisely the set of k-points of the fppf
sheaf quotient G=B , essentially because Spec k has no nontrivial fppf covers.
However, we can be much more concrete about spaces like this. The key idea is
a representation-theoretic characterization of algebraic subgroups:

Theorem 2.3 (Chevalley). If G is any affine algebraic group with algebraic
subgroup G 0, then there exist a (finite-dimensional) representation V of G and
a subspace V 0 � V such that G 0.k/ D fg 2 G.k/ j gV 0 � V 0g. We can even
choose V; V 0 so that V 0 is a line.

Proof. Let I be the kernel of the quotient map kŒG� ! kŒG 0�. We can pick a
finite generating set for I as an ideal. Then we can pick a finite-dimensional kŒG�-
comodule V � kŒG� containing these generators. (This is similar to the proof of
the linearity of affine algebraic groups, except that here, our representation of G
is the comodule itself, not its dual.) To get V 0 � V , we take V 0 D V \ I .

If g 2 G 0.k/, then gI � I , so gV 0 � V 0. Conversely, if gV 0 � V 0, then g
sends every generator of I to another element of I , but g acts on kŒG� by algebra
automorphisms, so gI � I and hence I is also the kernel of the quotient map
kŒG�! kŒG 0g�, which forces g 2 G 0.

Finally, once we have such V; V 0, we see that the same characterization of
G 0 holds when we replace V; V 0 by

Vd
V;
Vd

V 0, respectively, where d D
dim.V 0/.

Corollary 2.4 (Chevalley–Plücker). If G is a smooth affine algebraic group
with algebraic subgroup G 0, then there is a locally closed, G-equivariant em-
bedding G=G 0 ! PV for some representation V of G. In particular, G=G 0 is a
quasiprojective variety.

Proof. Take V; V 0 as in the theorem, with V 0 a line. LetG=G 0 ! PV be induced
by the map from G onto the orbit of ŒV 0�. The smoothness of G ensures that the
latter is faithfully flat, allowing us to identify the orbit with G=G 0.

2.3.

An algebraic subgroup P � G is parabolic if and only if G=P is projective,
not merely quasiprojective. As it turns out, there is a nice characterization of
parabolic subgroups. For the proof of the following fixed-point theorem, see
Milne Chapter 17.
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Theorem 2.5 (Borel). If B is a connected, smooth, solvable algebraic group
acting on a nonempty proper variety X , then XB is nonempty.

Corollary 2.6. Suppose that G is a smooth affine algebraic group.

(1) If B is a Borel subgroup and P a parabolic subgroup of G, then some
G.k/-conjugate of B is contained in P .

(2) Conversely, any algebraic subgroup ofG that contains a Borel is parabolic.

Remark 2.7. In the setup above, G must have some Borel subgroup, because G
has finite dimension and f1g is connected, smooth, and solvable.

Proof. (1): By Borel’s theorem, the action of B by left multiplication on G=P
must have a fixed point gP , in which case g�1Bg is a Borel contained in P .

(2): Since the image of any proper variety is proper, it suffices to show that if
B � G is a Borel, then G=B is proper. We induct on the dimension of G. Pick a
faithful representation V of G. The action of G on PV must have a closed orbit.
The stabilizer of any k-point of this orbit is a parabolic subgroup P � G. By (1),
it contains some conjugate of B , and without loss of generality, we may replace
B with this conjugate. Two cases: Either P is smaller than G, in which case
P=B is proper by the inductive hypothesis, and hence G=B is proper, or else
P D G, in which case V G contains a line, and we can replace V with V=.V G/
until we either reach f0g or reduce to the previous case.

Corollary 2.8. Any two Borels in a smooth affine algebraic group are conjugate.

Example 2.9. Any Borel of GLn is conjugate to the subgroup of upper-triangular
matrices. Similarly, any parabolic of GLn is conjugate to some subgroup of block
upper-triangular matrices.

Recall that by Milne Thm. 16.27, any two maximal tori in a connected, solv-
able, affine algebraic group are conjugate. This fact combined with Corollary 2.8
proves the Cartan–Lie–Kolchin theorem stated last time.

Another way to state Corollary 2.8 is: The conjugation action of G.k/ on
the set of Borel subgroups of G is transitive. Milne Thm. 17.48 shows that the
stabilizer of any Borel is itself:

Theorem 2.10. If B is any Borel subgroup of a connected, smooth, affine alge-
braic group G, then NG.B/ D B . Thus the map gB 7! gBg�1 is a bijection
from .G=B/.k/ to the set of Borel subgroups of G.

When we regard G=B as the variety of Borel subgroups of G, we will call it
the flag variety and denote it by B. Indeed, for G D GLn, the above theorem
follows from Corollary 2.8 together with the fact that if B is the stabilizer of a
flag EV , then gBg�1 is the stabilizer of g � EV .
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2.4.

The orbit decomposition ofG=B under the left action ofB gives rise, on k-points,
to the Bruhat decomposition that we discussed at the start. Note that we have
not yet proven the precise decomposition for general G. We can sketch the gist
modulo the following result. For G D GLn, it is a byproduct of the argument
that proves Jordan–Hölder, via the flag interpretation of B.k/.1

Theorem 2.11. If G is reductive, then any two Borel subgroups of G contain a
common maximal torus of G.

Sketch of Bruhat decomposition. We exhibit a map from B.k/nG.k/=B.k/ to
the Weyl group W D W.G; T /. For any g 2 G.k/, pick a maximal torus
S � B \ gBg�1. By Cartan–Lie–Kolchin, we can write

S D bT b�1 D .gb0g�1/.gTg�1/.gb0g�1/�1

for some b; b0 2 B.k/. But then b�1gb0 normalizes T , so we obtain an element
Œb�1gb0� 2 W . One has to check that this element only depends on BgB .

2.5.

Henceforth, k D NFq. In what follows, recall that we often write XF in place of
XF .k/ when F is a (relative) Frobenius map on X .

Any Frobenius map F W G ! G that respects the group law and stabilizes an
algebraic subgroup H � G induces an analogous map F W G=H ! G=H . The
identification .G=H/.k/ D G.k/=H.k/ induces an identification

.G=H/F fF -stable orbits of H.k/ on G.k/g:

The action of G.k/ on .G=H/.k/ restricts to an action of GF on .G=H/F .
Consider the standard Frobenius map F W GLn ! GLn given by raising

each matrix coordinate to the qth power, so that GLFn is the group classically
denoted GLn.Fq/. Then F stabilizes B and fixes Pw for all w. Hence the Bruhat
decomposition of GLn.k/ into double cosets of B.k/ implies an analogous
decomposition of GLFn into double cosets of BF . With more work,2 one can
further show that ..B PwB/=B/F D .BF PwBF /=BF , and hence, .GLn =B/F D
GLFn =B

F . What happens for general G;B; F ?
It turns out that the connectedness of B ensures that .G=B/F D GF =BF

holds for any F -stable Borel B . On Problem Set 1, you will use the theorem
below to deduce (a version of) the first corollary following it:

1Here I borrow from the answers to https://mathoverflow.net/q/15438.
2. . . than I originally thought was necessary, during the lecture. . .

https://mathoverflow.net/q/15438
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Theorem 2.12 (Lang). Let H be a connected, smooth algebraic group over k
and F W H ! H the Frobenius map for some Fq-form. Then the Lang map

h 7! h�1F.h/ W H ! H

is surjective.

The proof of Lang’s theorem is given on Wikipedia. The key idea is to calculate
the induced map on Lie algebras, using the fact that the differential of F vanishes
to show bijectivity.

Remark 2.13. Note that the Lang map is finite étale, and its fiber over the identity
is precisely HF . For this reason, one can think of the theorem as presenting H
as an HF -principal bundle over itself in the étale topology. This leads to bizarre
topological conclusions for, say, H D Ga and F.x/ D xq.

Remark 2.14. In the affine case, Steinberg generalized Lang’s theorem from
Frobenius maps to any surjective map F with finitely many fixed points. So I
sometimes speak of the Lang–Steinberg theorem even where it is overkill.

Corollary 2.15. Let G be a connected, smooth algebraic group over k with a
Frobenius map F W G ! G. Let X be a set with a G.k/-action and a map
f W X ! X such that f .g � x/ D F.g/ � f .x/ for all g 2 G.k/ and x 2 X .3

Then:

(1) Every f -stable G.k/-orbit on X contains an f -fixed point.
(2) If X D G.k/=H.k/ for some F -stable H � G, and f is induced by F ,

then X f D GF =HF .

Corollary 2.16. A connected, smooth affine algebraic group with Frobenius map
F always contains an F -stable Borel pair. In particular, any F -stable Borel
contains an F -stable maximal torus.

Proof. Take X to be the set of all Borel pairs, and f W X ! X to be defined by
f .B; T / D .F.B/; F.T //. Now Cartan–Lie–Kolchin implies the first statement.
Replacing the ambient group with a given F -stable Borel, we deduce the second
statement.

Remark 2.17. In the setting of a more general field k D NK, a K-form of an
algebraic group G is called quasi-split if and only if there is a Borel subgroup of
G that descends to the K-form. In this language, the last result essentially says
that Fq-forms are always quasi-split.

However, a given F -stable maximal torus need not be contained in an F -stable
Borel. If it is contained in such a Borel, then it is called F -maximally split.

3This setup generalizes the notion of compatible Frobenius maps defined earlier.
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Example 2.18. Let F be the standard Frobenius map on GL2. Then the diagonal
torus of GL2 is F -maximally split. At the same time, there is a different F -stable
maximal torus T � GL2 defined on k-points by

T .k/ D

( 
a �b

b a

!ˇ̌̌̌
ˇ a2 C b2 ¤ 0

)
:

It descends to an Fq-form T1 with the same matrix presentation. If T were
contained in an F -stable Borel, then that Borel would have an Fq-form containing
T1, which we can rule out by computation.

Note that the Fq-form of Gm called U.1/ embeds into T1. However, the
Frobenius map on Gm coming from U.1/ is not related to the F above.

Corollary 2.19. Any two F -stable Borel subgroups of a connected, smooth affine
algebraic group G are conjugate under GF , not just under G.k/.

Proof. Pick an F -stable Borel B . The isomorphism gB 7! gBg�1 W G=B ! B
is F -equivariant. Now use .G=B/F D GF =BF .

2.6.

We now focus on a connected, smooth affine algebraic group G over NFq with
a Frobenius map F corresponding to an Fq-form and an F -stable Borel pair
.B; T /. Recall that W D NG.T /=T . We claim that:

Proposition 2.20. If H � G is an F -stable, smooth algebraic subgroup and
NG.H/=H is finite, then NG.H/ is also F -stable. If H is morever connected,
then NG.H/F D NGF .HF /.

Proof. First, the hypotheses imply that N :D NG.H/ is smooth, and hence
reduced. So the kernel of the quotient map kŒG�! kŒN � equals its radical. So
by the Nullstellensatz, it is determined by N.k/ D Hom.kŒN �; k/ as a subset
of G.k/ D Hom.kŒG�; k/ (where these are Hom spaces in the category of k-
algebras). We deduce that if N.k/ is F -stable, then N is too.

Next, F must induce a self-bijection of H.k/. So for all n 2 N.k/ and
h 2 H.k/, we see that F.n/ � h D F.n � F �1.h// 2 F.H.k// D H.k/, where
� here denotes the conjugation action. Hence F.n/ 2 N.k/, as needed.

The inclusion NG.H/F � NGF .HF / follows from the definitions. For the
converse, we must show that if an element of GF normalizes HF , then it
normalizes H . Rewrite GF ;HF in terms of the Fq-points of the corresponding
Fq-forms, then use an argument similar to that in the first paragraph.

Corollary 2.21. In our setup, if G is reductive, then NG.T / is F -stable. In
particular, the F -action on NG.T / descends to W .
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By Corollary 2.15, we have W F D NG.T /
F =T F D NGF .T F /=T F . The

Bruhat decomposition of G.k/ restricts to

GF D
a

w2W F

BFwBF :

We say that .G; T / is split under F if and only if F acts trivially on W .

Example 2.22. Let .�/� W GLn ! GLn be the “anti-transpose” given by g� D
JgtJ , where gt is the usual transpose and J 2 GLn.k/ is the matrix with 1’s
along the anti-diagonal and 0’s everywhere else. Then

F 0.g/ :D .g�/�q D .g�q/�

is a Frobenius map that differs from the standard one when n � 3, or when q
is odd and n D 2. It defines the Fq-form of GLn promised earlier, GU.n/. For
n � 3, we can check that F 0 acts on W D Sn nontrivially.

2.7.

As usual, let U D ŒB; B�. Since B is F -stable, so is U . The GF -action on
GF =U F defines a representation of GF on

I D IndG
F

UF .1/ :D fC-valued functions on the finite set GF =U F
g:

The GF -stable summands of I are called the principal series representations of
GF . Some standard theory shows that I '

L
� I� as a representation, where the

sum runs over characters � W BF ! C� that factor through T F ' BF =U F , and

I� D IndG
F

BF .�/

for all � . To determine the summands of I� , we analyze EndGF .I�/.
Here is a very general principle. Suppose that � is a finite group and„ a finite

set with a �-action. Let C„ be the representation of � formed by the C-valued
functions on „ under Œg � f �.�/ D f .g�1 � �/. Let � act on „ �„ diagonally,
and endow C.„ �„/ with the convolution product

.f1 � f2/.x; y/ D
X
z2„

f1.x; z/f2.z; y/:

Note that C.„ �„/� forms a subalgebra of C.„ �„/.

Proposition 2.23. There is an isomorphism of C-algebras

C.„ �„/�
�
�! End�.C„/;

1O 7!

�
1x 7!

P
y2„

.x;y/2O

1y

�
;

where O denotes any �-orbit of „ �„, and 1O ; 1x refer to indicator functions
on O; fxg.
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Above, the image of 1O in End�.C„/ is called the Hecke operator for O . In
the case where „ D �=H for some subgroup H � � , we have a further bijection

�n.�=H � �=H/
�
�! Hn�=H;

.yH; xH/ 7! Hy�1xH;

which induces an isomorphism of vector spaces C.„�„/� ' .C�/H�H. Taking
� D GF and H D U F ; BF , we deduce:

Corollary 2.24. As a vector space, EndGF .I /, resp. EndGF .I.1//, has a basis
indexed by U F nGF =U F , resp. BF nGF =BF . In particular, the latter is also
indexed by W F .

The arguments above can be pushed further to analyze HomGF .I�; I / for
any �; . Returning to the abstract setup, let A;B be subgroups of � , and let ˛,
resp. ˇ, be an arbitrary C-valued character of A, resp. B. For all g 2 � , we set
gA D gAg�1, so that g˛.�/ :D ˛.g�1.�/g/ is a C-valued character of gA.

The following is proved via Frobenius reciprocity in most texts on character
theory, such as Serre’s book:

Theorem 2.25 (Mackey). Above, there is an isomorphism of vector spaces

Hom�.Ind�A.˛/; Ind�B.ˇ// '
M

g2Bn�=A

HomgA\B.
g˛; ˇ/:

Corollary 2.26. We have

HomGF .I� ; I�/ '
M
w2W F

HomwBF\BF .w�; �/:

In particular, I� is irreducible if and only if w� ¤ � as characters of T F for all
w ¤ e.
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