MATH 430: INTRODUCTION TO TOPOLOGY PROBLEM SET #7

SPRING 2025

Due Wednesday, April 2. You may consult books, papers, and websites as long as you cite all sources and write up your solutions in your own words.

Problem 1 (Munkres 330, #1). Show that if $h, h' : X \to Y$ are homotopic continuous maps, and similarly, $k, k' : Y \to Z$ are homotopic, then $k \circ h$ and $k' \circ h'$ are homotopic.

Problem 2. Let $x_0, x_1 \in X$. Recall that if $\alpha : [0, 1] \to X$ is a path from x_0 to x_1 , and $\bar{\alpha}(s) = \alpha(1-s)$ is the reverse path, then

$$\hat{\alpha}: \pi_1(X, x_0) \to \pi_1(X, x_1)$$
 defined by $\hat{\alpha}([\gamma]) = [\bar{\alpha}] * [\gamma] * [\alpha]$

is an isomorphism of groups (Munkres Thm. 52.1).

Show that $\hat{\alpha}$ only depends on the path-homotopy class $[\alpha]$. That is, if β is path-homotopic to α , then $\hat{\alpha} = \hat{\beta}$. Later in class, using Problem 3 below, we will show that the converse is false.

Problem 3 (Munkres 335, #3). Let $x_0, x_1 \in X$. Show that $\pi_1(X, x_0)$ is abelian if and only if, for every pair of paths α, β from x_0 to x_1 , we have $\hat{\alpha} = \hat{\beta}$.

Problem 4 (Munkres 334, #1). A subset $A \subseteq \mathbb{R}^n$ is *star convex* if and only if, for some point $a_0 \in A$, any line segment joining a_0 to any other point of A is contained in A.

- (1) Give a star convex subset of \mathbf{R}^2 that is not convex.
- (2) Show that if A is star convex, then A is simply connected.

Problem 5. Classify the following letter shapes up to: (1) homeomorphism; (2) homotopy equivalence.

You are not required to write down explicit homeomorphisms or homotopy equivalences. Nonetheless, provide some informal reasoning for your classification.

Problem 6. Let $X = [0, 1] \times [0, 1]$ (in its analytic topology). We define the (closed) *Möbius band* to be the quotient space $\mathcal{M} = X/\sim$, where $(0, y) \sim (1, 1 - y)$ for all y, and no other pairs of distinct points of X get identified under \sim .

Recall that the circle S^1 is homeomorphic to a similar quotient space. Give an explicit homotopy equivalence between \mathcal{M} and S^1 . (Hence, they have the same fundamental groups.)

Problem 7 (Munkres 366, #5). Let X be any topological space. Show that the identity map of X is homotopic to a constant map if and only if X is homotopy equivalent to a point. (In this case, X is said to be *contractible*.)

Problem 8 (Munkres 370, #4(2)). Recall that a group homomorphism is *trivial* if and only if it sends every element of the domain to the identity element of the target. Give an example of a space X, point $x_0 \in X$, and open $U, V \subseteq X$ containing x_0 such that:

- $X = U \cup V$.
- $U \cap V$ is path-connected.
- $\pi_1(U, x_0)$ and $\pi_1(V, x_0)$ are both nontrivial.
- The homomorphisms $\pi_1(U, x_0) \to \pi_1(X, x_0)$ and $\pi_1(V, x_0) \to \pi_1(X, x_0)$ are both trivial.

Justify that each condition holds for your example.