MATH 430: INTRODUCTION TO TOPOLOGY PROBLEM SET #5

SPRING 2025

Due Wednesday, March 5. You may consult books, papers, and websites as long as you cite all sources and write up your solutions in your own words.

Problem 1 (Munkres 152, #5). We say that X is *totally disconnected* if and only if its only nonempty connected subspaces are one-point sets.

- (1) Show that if X is discrete, then X is totally disconnected.
- (2) Show that the set of rational numbers Q, as a subspace of (analytic) R, is totally disconnected, but not discrete.
- **Problem 2** (Munkres 157, #1(a), (c)). (1) Show that no two of the spaces (0,1), (0,1], [0,1] are homeomorphic. *Hint:* What happens if you remove certain points from each of these spaces?
 - (2) Show that **R** is not homeomorphic to \mathbf{R}^n for any n > 1.

Problem 3 (Munkres 158, #3). Let $f: X \to X$ be continuous.

- (1) Show that if X = [0, 1], then f has a *fixed point*: that is, a point $x \in X$ such that f(x) = x.
- (2) Show that the analogue of (1) fails for X = [0, 1).
- **Problem 4** (Munkres 162, #2). (1) What are the components and path components of \mathbf{R}^{ω} in the product topology?
 - (2) Give \mathbf{R}^{ω} the uniform topology. Show that $x = (x_n)_n$ and $y = (y_n)_n$ belong to the same connected component of \mathbf{R}^{ω} if and only if $x - y := (x_i - y_i)_i$ is bounded. *Hint:* Reduce to the case where y = (0, 0, 0, ...).
 - (3) Give R^ω the box topology. Show that x and y belong to the same connected component of R^ω if and only if x y is eventually zero: that is, x_i = y_i for all i large enough. Hint: Show that if x y is not eventually zero, then we can construct a self-homeomorphism of R^ω such that h(x) is bounded but h(y) is unbounded, and derive a contradiction.

Problem 5 (Munkres 162, #4). Show that if X is locally path connected, then every connected open subset of X is path connected.

Problem 6 (Munkres 171, #5). Let X be Hausdorff, and let A, B be disjoint compact subspaces of X. Show that there exist disjoint open sets $U, V \subseteq X$ such that $A \subseteq U$ and $B \subseteq V$.

Problem 7 (Munkres 171, #7). Show that if Y is compact, then for any space X, the projection $pr_1: X \times Y \to X$ is a closed map.

Problem 8 (Munkres 171, #8). Let Y be compact Hausdorff. Show that a map $f: X \to Y$ is continuous if and only if its *graph*

$$\Gamma_f = \{ (x, f(x)) \in X \times Y \mid x \in X \}$$

is closed in $X \times Y$. *Hint:* Observe that if Γ_f is closed and V is an open neighborhood of $f(x_0)$ for some $x_0 \in X$, then $\Gamma_f \cap (X \times (Y - V))$ is closed. Apply Problem 7.