MATH 430: INTRODUCTION TO TOPOLOGY
FINAL EXAM GUIDE

SPRING 2025

The final exam will be held in Kline Tower (KT) 205, on Sunday, May 4,
at 2:00 pm. It will be a closed-book exam, designed to take < 120 minutes.

What Could Appear.

§12-13. Topologies.

comparing the discrete, indiscrete, and finite-complement topologies on a
set; also to the analytic topology on R™ and the lower-limit topology on R
what it means for a subbasis or basis to generate a given topology

examples where different bases generate the same topology

§16-17, 22. Subspaces, Continuous Maps, Quotients.

given A CY C X, how the interior/closure of A in Y are related to the
interior/closure of A in X

relationship between closures and limit points

what it means to check that a space is Hausdorft ( = T») or T

examples of spaces which are T7 but not Hausdorff, or which are not T
relationship between the Hausdorff axiom and limit points

what it means to check continuity using a basis/subbasis of the target
examples of continuous bijections that are not homeomorphisms

the pasting lemma (Munkres Thm. 18.3)

what it means for a continuous map f : X — A to be a quotient map, given
topological spaces X, A

examples of the quotient space X/~ arising from an equivalence relation ~

§15, 19-20. Products, Metrics.

characterization of the product topology in Munkres Thm. 19.6
comparing the box and product topologies on R, R* (Problem Set 3)
comparing the euclidean and square metrics on R"™; the uniform metrics on
R*>, R~

§23-27, 36. Connectedness, Compactness, Manifolds.

how connectedness interacts with subspaces, continuous maps, and finite
products

why totally disconnected is stricter than discrete

why path-connected implies connected

the intermediate value theorem

examples of spaces that are not (path-)connected but locally (path-)connected
how compactness interacts with continuous maps and finite products
Heine—Borel for [0, 1] and consequences for related spaces

second countability and the definition of a manifold
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§51-52, 54, 58-59. Fundamental Groups.

comparing homotopy and path homotopy

how (path) homotopy interacts with composition of maps (o)

the definition of 71 (X, z)

effect of changing the basepoint = on 71 (X, x)

effect of (star-)convexity of X on (X, x)

key ideas in the proof that w1 (S™,x) is trivial for n > 2

examples of deformation retracts

effect of retract(ion)s and homotopy equivalences on homomorphisms of 71’s

comparing homeomorphisms and homotopy equivalences

§68-70, 72-73. The Seifert—-van Kampen Theorem.

examples of subgroups, kernels, normal subgroups, quotients

definition of reduced words and their lengths

construction of free groups

universal property of the free product Gy * G2 (Lem. 68.1)

definitions and exampes of generating sets and group presentations
statement of Seifert—van Kampen, especially the hypotheses

71(St v S1) and more general wedge products

effect of attaching a 2-cell to a Hausdorff space (Munkres Thm. 72.1; see
also §60)

applications of Munkres Thm. 72.1 to the torus and dunce caps (Munkres
§73) and to the Klein bottle

§55-54. Coverings.

definitions of covering maps and covering spaces

statement of the path-lifting and homotopy-lifting properties

m1(S) and the key ideas in its computation

examples of covering spaces of S' Vv S!, tori, dunce caps, Klein bottles
effect of covering maps on homomorphisms of m;’s

statement of the lifting correspondence (Munkres Thm. 54.6, or my restate-

ment of it from class)

What We’ll Have Covered by Then, But Will Not Appear.

various hard proofs (why the topologist’s sine curve is not path-connected,
why 71 (X, z) satisfies the group axioms, the existence of free products of
groups, the path/homotopy-lifting properties, the full calculation of m (S™)
for n > 0, etc.)

the K-topology on R

the axiom of choice

the tube lemma (Munkres Lem. 26.8)

the “long line” (Munkres 158-159, #12)

commutator subgroups

torsion subgroups of abelian groups

direct sums of abelian groups and free abelian groups

products versus coproducts
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effect of connect sum on m;’s of surfaces

the Alexander horned sphere

statement of the Galois correspondence

pointed coverings and (pointed) equivalences of coverings
the construction of a universal covering from the path space

statement of the classification of compact surfaces

What We Won’t Have Covered by Then.

Munkres §5-8, 56-57, 75, 81-82 and Chapter 10

the Brouwer fixed-point theorem (Munkres Thm. 55.6)

the proofs of Heine—Borel for [0, 1] and Seifert—van Kampen
the formal definition of a group action

the formal definition of labelling schemes (Munkres §74)
the formal definitions of cutting and pasting (Munkres §76)

proof of the Galois correspondence
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