
MATH 340: ADVANCED LINEAR ALGEBRA
PROBLEM SET #7

SPRING 2025

Due Wednesday, April 9. You may consult books, papers, and websites as long
as you cite all sources and write up your solutions in your own words. Updated
on 4/5 at 1:30 pm, in red.

Problem 1. Look up the definition of an integer partition. Let p(n) be the number
of partitions of an integer n > 0. Using Jordan canonical form, show that p(n) is
also the number of conjugacy classes of nilpotent n × n matrices over C.

Problem 2. Let

sl(n, F ) = {n × n matrices over F of trace 0}.

The notation sl stands for special linear.

(1) Verify that sl(n, F ) is a vector space over F of dimension n2 − 1.
(2) Show that an element of sl(2, F ) is nilpotent if and only if its determinant

is zero.
(3) Using a suitable basis to identify sl(2, R) with R3, sketch the subset of

nilpotent matrices. (No need to prove the basis is a basis.)

In principle, the following two problems are solved in Axler’s text. But it may be
easier to think about them from scratch, than to start with Axler.

Problem 3. Let V, W be finite-dimensional vector spaces and T : V → W a linear
map. Show that the kernel ker(T ∨) and the annihilator AnnW ∨(im(T )) are the
same subspace of W ∨.

Problem 4. Keep the setup of Problem 3.

(1) Show that

dim W − dim ker(T ∨) = dim V − dim ker(T ).

Hint: You’ll need Problem 3, a dimension formula relating U and AnnW ∨(U)
for some U ⊆ W , and a dimension formula relating ker(T ) and im(T ).

(2) Deduce from (1) that

dim im(T ∨) = dim im(T ).

(3) Using (2), show that the column rank and row rank of any square matrix
M agree.

You may use the fact (Axler §3.132) that if M represents a linear operator
T : V → V in some basis for V , then the transpose matrix M t defined by
(M t)j,i = Mi,j represents T ∨ : V ∨ → V ∨ in the dual basis.
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Problem 5. Let V be a vector space over F , possibly infinite-dimensional. In each
case below, show that T is a linear isomorphism without picking an explicit basis
for V . You may still use the fact that a tensor product of vector spaces is spanned
by pure tensors.

(1) T : {⃗0} → {⃗0} ⊗ V defined in the only possible way.
(2) T : V ⊕n → F n ⊗ V , where V ⊕n is the n-fold direct sum of V for some

n > 0, defined by

T (v(1), . . . , v(n)) =
∑

i

ei ⊗ v(i),

where e1, . . . , en is an ordered basis for F n. Hint: To show injectivity, use
the definition of ei ⊗ v(i) as a bilinear functional and an ordered basis dual
to (ei)i. You may use the fact that the map V → (V ∨)∨ from Problem Set
6, #6 is injective for any V (even when it is not bijective).

Problem 6. Let V, W, U be vector spaces. The set

Bil(W, V | U) = {bilinear maps from W × V into U}

forms a vector space under (β + β′)(w, v) = β(w, v) + β′(w, v) and (a · β)(w, v) =
a · β(w, v). It recovers Bil(W, V ) when U = F .

For all linear T : W ⊗ V → U , let βT : W × V → U be the bilinear map such
that βT (w, v) = T (w ⊗ v). Show that the map

B : Hom(W ⊗ V, U) → Bil(W, V | U) defined by B(T ) = βT

is linear and injective, without picking explicit bases for the vector spaces involved.
Hint: Again, pure tensors span W ⊗ V .

It turns out that B is an isomorphism, but starting from Axler’s definition of
W ⊗ V , this is difficult to show without picking explicit bases for V and W .

Problem 7. A bilinear form β : V × V → F is degenerate if and only if there is
some nonzero v ∈ V such that either β(v, −) or β(−, v) is the zero functional on V .
It is nondegenerate otherwise. Now set V = F [x]. Show that:

(1) If β(p, q) =
∫ 1

0
p(x)q(x) dx, then β is nondegenerate.

(2) If β(p, q) = p(1)q(1), then β is degenerate.

Problem 8. Show that for all n ≥ 2, there is a bilinear form β on F n such that

β(w, v) ̸= 0 for some w, v ∈ F n, but β(v, v) = 0 for all v.

Hint: Take β(w, v) = wtMv for some carefully chosen n × n matrix M .


	Due Wednesday, April 9

