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2.

Notes on the Jordan canonical form theorem.

2.1. Throughout, F 2 fR;Cg. We fix a vector space V over F and a linear operator
T W V ! V .

2.2. If V is finite-dimensional, then a choice of an ordered basis for V allows us to
express T in terms of a corresponding square matrix M D .Mj;i/j;i . If the basis is
e1; : : : ; en, then the matrix entries Mj;i are scalars such that

Tei D
X
j

Mj;iej for all i; j :

If we change to a new basis, then we get a new matrix. The change-of-basis formula
shows that if M;M 0 are matrices for T with respect to two different bases, then M 0 D
PMP �1 for some invertible matrix P . In this case we say that M and M 0 are conjugate.
This defines an equivalence relation on square matrices known as conjugacy.

2.3. We say that a linear subspace W � V is T -stable if and only if T maps W into
itself. That is, Tw 2 W for all w 2 W . In this case, T defines a linear operator
T jW W W ! W , simply by restricting its domain and target.

Note that V and the zero subspace fE0g are always T -stable. These are the trivial
cases. The presence of a nontrivial T -stable subspace corresponds to the existence of a
block-triangular matrix for T . Similarly, a direct-sum decomposition V D W CW 0,
in which W;W 0 are both nontrivial and T -stable, corresponds to the existence of a
block-diagonal matrix for T . These terms are best illustrated through examples.

Example 2.1. Consider the following matrices, where � means an arbitrary scalar:0B@� � �0 � �

0 � �

1CA ;
0B@� 0 0

� � �

� � �

1CA ;
0B@� 0 0

0 � �

0 � �

1CA :
Convince yourself that if T has a matrix of the first form, with respect to some ordered
basis .e1; e2; e3/, then the line Fe1 is T -stable; if it has a matrix of the second form,
then the plane Fe2 C Fe3 is T -stable; and if it has a matrix of the third form, then both
subspaces are T -stable.

2.4. A matrix is called diagonal if and only if its only nonzero entries are diagonal
entries: i.e., those of the form Mj;j . (There can still be zeros on the diagonal, too.)
These are the simplest matrices to understand.

We say that T is diagonalizable if and only if we can find a basis in which the matrix
of T is diagonal. Similarly, we say that a square matrix is diagonalizable if and only if it
is conjugate to a diagonal matrix.
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Example 2.2. Consider the 2 � 2 matrices 
0 1

1 0

!
;

 
0 �1

1 0

!
;

 
0 1

0 0

!
:

Convince yourself that the first is always diagonalizable; the second is diagonalizable
when F D C; and the third is never diagonalizable.

2.5. There is a matrix-free interpretation of what it means for a linear operator to be
diagonalizable. First, define a eigenline for T to be a 1-dimensional T -stable linear
subspace. Then T is diagonalizable if and only if V is a sum of eigenlines for T .

An eigenvector is a vector whose span is an eigenline. Equivalently, this is a vector v
satisfying two conditions:

v ¤ E0 and T v D �v for some scalar � 2 F :

(The first condition means the span is 1-dimensional, not 0-dimensional; the second
means the span is T -stable.) Above, � is called the eigenvalue corresponding to the
eigenline. It is possible for � to be 0.

For any �, we define the �-eigenspace of T to be the linear subspace of vectors v 2 V
such that T v D �v. Equivalently, it is the sum of all eigenlines for T with eigenvalue �.
It is also ker.T � �IdV /.

2.6. Example 2.2 shows that some linear operators are not diagonalizable. However, it
turns out that as long as F D C and V is finite-dimensional, we can always decompose
V as a direct sum of T -stable subspaces that are as close as possible to being eigenspaces.
This is the matrix-free meaning of the Jordan canonical form theorem. The first step
toward the full theorem is the following result.

Theorem 2.3. If F D C and V is finite-dimensional and nonzero, then T has some
eigenline in V .

The key idea in the proof is to form new operators by plugging T into polynomials.
Namely, for any polynomial p.z/ D a0 C a1z C � � � C adzd 2 CŒz�, we set

p.T / D a0IdV C a1T C � � � C adT d ;

where addition and scalar multiplication of linear operators is defined pointwise, and T i

means the i th iterate of T . We will omit IdV from the notation, where convenient.

Proof sketch. Set n D dimV > 0. Pick v ¤ E0.
Since v; T v; : : : ; T nv is a set of nC 1 vectors, they must be linearly dependent. So

there exist some a0; a1; : : : ; an 2 F , not all zero, such that

.a0 C a1T C � � � C anT
n/v D E0:
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That is, there exists some nonzero polynomial p.z/ such that p.T /v D E0. (Note that
this particular step did not require F D C.)

Now pick p.z/ of minimal degree among such polynomials. Since v ¤ E0, we know
that p.z/ cannot be a constant polynomial. So by the fundamental theorem of algebra, it
has some root �. That is,

p.z/ D .z � �/q.z/ for some polynomial q.z/:

So .T ��/q.T /v D p.T /v D E0. So as long as q.T /v is nonzero, it is an eigenvector for
T with eigenvalue �. But q is a nonzero polynomial, because p is, and deg.q/ < deg.p/,
so q.T /v D E0 would contradict the minimality of p.

Example 2.4. The conclusion of the theorem need not hold. . .

� . . . if F D R. Check that if T is a rotation in R2 by an angle that is not a multiple
of � radians, then T has no eigenlines.
� . . . if V is infinite-dimensional. Check that if T is the shift operator on the vector

space of infinite sequences given by T .x1; x2; x3; : : :/ D .0; x1; x2; : : :/, then T
has no eigenlines.

2.7. In terms of matrices, the previous theorem shows that any square matrix over C is
conjugate to one of the form 0BBB@

� � � � � �

0 � � � � �

0
:::
: : :

:::

0 � � � � �

1CCCA :
To see this, pick an eigenvector e1 for the underlying linear operator, extend it to an
ordered basis e1; e2; : : : ; en for the whole vector space, then observe that the linear
operator takes the form above with respect to the new basis. This matrix interpretation
of Theorem 2.3 motivates the following improvement:

Theorem 2.5. If F D C and V is finite-dimensional, then there is some basis for V in
which the matrix of T is upper-triangular:0BBB@

� � � � � �

0 � � � � �

:::
: : :

: : :
:::

0 � � � 0 �

1CCCA :
The key idea in the proof is that for any scalar �, the linear subspace im.T � �/ � V

is T -stable. More generally, we have a “stability lemma”:

for any p.z/; q.z/ 2 F Œz�, the subspace im.p.T // is q.T /-stable:(�)

The reason for the lemma: p.T / and q.T / always commute, because polynomials in the
same variable always commute, so q.T /.p.T /v/ D p.T /.q.T /v/ for all vectors v.
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Proof sketch. We induct on dimV . In the base case dimV D 0, we have V D fE0g, so
we’re done. Else, by Theorem 2.3, T has some eigenvector v, with some eigenvalue �.
This means dim ker.T � �/ > 0.

Now let V 0 D im.T � �/. By (�), V 0 is T -stable, so we can form T 0 D T jV 0 .
The hypotheses of our desired theorem still hold with V 0; T 0 in place of V; T . But
dimV 0 < dimV , so by induction, we can find an ordered basis for V 0 in which the
matrix of T 0 is upper-triangular.

Let w1; : : : ; wm be this basis. Extend it in an arbitrary way to an ordered basis
w1; : : : ; wm; v1; : : : ; v` for V . We claim that T is upper-triangular with respect to the
latter basis. Indeed, sketch the matrix M . Convince yourself that the upper-triangularity
of T 0 implies that the lower-left block of M is zero, while the upper-left block of M is
upper-triangular. Meanwhile,

T vi D .T � �/vi C �vi 2 V
0
C Cvi :

Convince yourself that this identity implies the upper-triangularity of the lower-right
block of M .

2.8. Any upper-triangular square matrix is a sum of a diagonal matrix and an upper-
triangular matrix with zeros along its diagonal. One can check that the latter kind of
matrix is always nilpotent: some power of it is the zero matrix. Similarly, a linear
operator is called nilpotent if and only if some power of it is the zero operator.

The nilpotent case of Theorem 2.5 says, conversely: If W is a finite-dimensional
vector space over C, and S W W ! W is a nilpotent operator, then W has some basis
in which the matrix of S is upper-triangular with zeros along its diagonal. To refine
Theorem 2.5, we might start by trying to refine this case.

Below, we define the superdiagonal of a square matrixM to be its collection of entries
of the form Mj;jC1.

Theorem 2.6. Let F be arbitrary and V a finite-dimensional vector space over F . If
S W V ! V is nilpotent, then there is a basis of V in which the matrix of S only has
nonzero entries along its superdiagonal, and these entries are all 1’s.

The following 6�6matrix has the form specified by the theorem’s conclusion. (Empty
entries denote 0’s.) 0BBBBBBB@

0 1

0

0 1

0 1

0

0

1CCCCCCCA
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This matrix is a block sum of three Jordan blocks: in order from top to bottom, 
0 1

0

!
;

0B@0 1

0 1

0

1CA ; �
0
�
:

Each Jordan block J corresponds to an S-stable linear subspace VJ � V . To illustrate
how, suppose that in the setup above, the ordered basis of W is labeled e1; e2; : : : ; e6.
Then the three Jordan blocks correspond to span.e1; e2/, span.e3; e4; e5/, span.e6/, in
order. The linear operator S sends

e2 7! e1 7! E0; e5 7! e4 7! e3 7! E0; e6 7! E0:

In general, we define a Jordan chain of a nilpotent linear operator S W V ! V to be a
sequence of nonzero vectors v1; v2; : : : ; v` 2 V of maximal length such that S sends

v1 7! v2 7! � � � 7! v` 7! E0:

By construction, S admits a Jordan chain of length ` if and only if V admits a basis in
which the matrix of S contains a (maximal) ` � ` Jordan block. Thus Theorem 2.6 is
equivalent to the following matrix-free statement:

Theorem 2.7. Let F be arbitrary and V a finite-dimensional vector space over F . If
S W V ! V is nilpotent, then there is a basis for V consisting of disjoint Jordan chains
of S .

Proof sketch. Induct on dimV . In the base case dimV D 0, we have V D fE0g, so we’re
done. Else, dim ker.S/ > 0 because S is nilpotent.

Now set V 0 D im.S/. By (�), V 0 is S-stable, so we can form S 0 D S jV 0 . Note that
V 0 remains finite-dimensional and S 0 remains nilpotent. But dimV 0 < dimV , so by
induction, we can find a basis for V 0 consisting of disjoint Jordan chains of S 0. We can
thus write its elements as

w1; Sw1; : : : ; S
d1w1; w2; Sw2; : : : ; S

d2w2; : : : ; wk; Swk; : : : ; S
dkwk:

We need to extend it to a basis for W consisting of disjoint Jordan chains of S .
Since wj 2 W 0 D im.S/, we can pick some v1; : : : ; vk 2 W such that Svj D wj

for all j . Since the elements Sd1w1; : : : ; S
dkwk form a basis for ker.S 0/, we also know

that k D dim ker.S 0/. Since ker.S 0/ D ker.S/ \W 0, a linear subspace of ker.S/, we
can pick u1; : : : ; u` 2 W such that

Sd1w1; : : : ; S
dkwk; u1; : : : ; u`

together form a basis for ker.S/. In this case, k C ` D dim ker.S/. So once we append
the vj ’s and ui ’s to our basis of V 0, we get a set of size

dim im.S/C k C ` D dim im.S/C dim ker.S/ D dimV:

Check that the enlarged set is linearly independent. Hence, it forms a basis for V .
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2.9. We can immediately bootstrap Theorem 2.6 to a slightly broader situation. Recall
that the �-eigenspace of a general operator T W V ! V is defined as ker.T � �/ � V .
The generalized �-eigenspace of T is defined as[

n>0

ker..T � �/n/:

Note that these kernels are nested:

ker.T � �/ � ker..T � �/2/ � ker..T � �/3/ � � � �

It follows that the generalized �-eigenspace is indeed a linear subspace of V , and that if
V is finite-dimensional, then the sequence of kernels stabilizes after finitely many steps
N , so that the generalized eigenspace is just ker..T � �/N /. A slightly subtler fact:

Lemma 2.8. If the generalized �-eigenspace of T is nonzero, then the actual �-
eigenspace of T is also nonzero: i.e., � is actually an eigenvalue for T .

Proof sketch. Show that there exist n > 0 and v 2 V such that .T � �/n�1v ¤ E0, but
.T � �/nv D E0. Then the desired eigenvector is .T � �/n�1v.

Finally, we can check that the generalized �-eigenspace of T is the maximal T -stable
linear subspace of V on which T restricts to a nilpotent operator. So Theorem 2.6
implies:

Theorem 2.9. Let F be arbitrary and V a finite-dimensional vector space over F . If V
forms a single generalized eigenspace of T , with eigenvalue �, then there is some basis
for V in which the matrix of T only has:

� �’s along its diagonal,
� 0’s and 1’s along its superdiagonal,
� 0’s everywhere else.

We refer to blocks along the matrix diagonal that take the form 
� 1

�

!
;

0B@� 1

� 1

�

1CA ; �
�
�
; etc.

as Jordan blocks with eigenvalue �, this terminology being justified by Lemma 2.8.

2.10. Although V need not be a sum of eigenspaces of T , we can say more about
generalized eigenspaces of T :

Theorem 2.10. If F D C and V is finite-dimensional, then V is a direct sum of
generalized eigenspaces of T . That is, there exist a finite list of scalars �1; : : : ; �k 2 F
and a direct-sum decomposition V D W1 C � � � CWk such that Wi is the generalized
�i -eigenspace of T for all i .
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Proof sketch. Induct on dimV . If dimV D 0, then we’re done, Else, by Theorem 2.3,
T has an eigenvalue �. Hence the �-eigenspace of T is nonzero.

Pick N large enough that the generalized �-eigenspace of T is exactly ker..T ��/N /.
Let V 0 D im..T ��/N /. We claim that V D V 0Cker..T ��/N /, and that this is a direct
sum. By the usual dimension formula, it suffices to check that V 0\ker..T ��/N / D fE0g.
Indeed, if w belongs to this intersection, then w 2 V 0 implies that w D .T � �/Nv for
some v 2 V , while w 2 ker..T � �/N / implies that .T � �/2Nv D .T � �/Nw D E0.
Since we chose N large enough that

ker..T � �/N / D ker..T � �/NC1/ D � � � D ker.T � �/2N /;

we deduce that w D .T � �/Nv D E0.
By (�), V 0 is T -stable, so we can form T 0 D T jV 0 . Since dimV 0 < dimV , the

inductive hypothesis says that V 0 is a direct sum of generalized eigenspaces of T 0. Note
that � cannot occur as one of the eigenvalues here, since V 0 has zero intersection with
the generalized �-eigenspace of T . For all other scalars �, check that the generalized
�-eigenspace of T 0 in V 0 is also the generalized �-eigenspace of T in V . Check that the
sum of all these subspaces along with ker..T � �/N / remains a direct sum.

Together, Theorem 2.9 and Theorem 2.10 produce a refinement of Theorem 2.5:

Corollary 2.11 (Jordan Canonical Form). If F D C and V is finite-dimensional, then
there is some basis for V in which the matrix of T is a block sum of Jordan blocks with
possibly-varying, possibly-nonzero eigenvalues.

Equivalently, every square matrix over C is conjugate to some block sum of Jordan
blocks.

The following is a typical Jordan canonical form matrix, with eigenvalues �1; �2; �3:0BBBBBBB@

�1 1

�1

�2 1

�2 1

�2

�3

1CCCCCCCA
Note that there are no entries “between” the blocks. However, two or more of the �i ’s
could be equal. The matrix is nilpotent precisely when they are all zero.


