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4. 2/13

4.1. Rules for divisibility We’ve been discussing divisors and long division.
Have people heard the following rules for testing divisibility?

(1) 3 divides n if and only if it divides the sum of the digits of n.
(2) 4 divides n if and only if it divides the number formed by the last two

digits of n.
(3) 5 divides n if and only if the last digit of n is 0 or 5.
(4) 9 divides n if and only if it divides the sum of the digits of n.

4.2. Digits What do we mean by a digit of n? It means the numbers a0; a1; : : : ; ak

when we write n as

n D 10kak C � � � C 102a2 C 10a1 C a0:(�)

And similarly, after the decimal point, using negative powers of 10. This is called
“expansion in base ten”, or simply, decimal expansion.

Why do we write numbers this way, and not the way the Romans did? To
write arbitrarily large numbers, the Romans would have needed to come up with
arbitrarily many symbols.

4.3. Let us try to prove some of the divisibility rules.

Proof of the rule for 4. We want to show that, in the notation of (�),

4 divides n ” 4 divides 10a1 C a0.

The difference between n and 10a1 C a0 is an expression X divisible by 102.
Since 102 D 4.25/, this expression is also divisible by 4. So if 4 divides n,
then it divides 10a1 C a0 D n �X , and if 4 divides 10a1 C a0, then it divides
n D X C 10a1 C a0.

Proof of the rule for 3. We want to show that

3 divides n ” 3 divides ak C � � � C a1 C a0.

We need to deal with the coefficients 10j . Note that 10j D 1 C 3Xj , where
Xj 2 N has j digits, all 3’s. So we can expand

n D .1CXk/ak C � � � C .1CX1/a1 C a0 D X C ak C � � � C a1 C a0;

where X D Xkak C � � � C X1a1 is divisible by 3. The rest is the same as the
previous proof.

These proofs are cumbersome. It would be better to avoid carrying around
extra variables. As with well-ordering, the key idea to improvement is that we
gain power by working with sets rather than their elements.
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4.4. Congruence First, we say that integers a and b are congruent modulo m,
and write a � b .mod m/, if and only if n divides a � b.

This is an example of an equivalence relation: That is, we can prove:
(1) a � a .mod m/.
(2) a � b .mod m/ if and only if b � a .mod m/.
(3) a � b .mod m/ and b � c .mod m/ together imply a � c .mod m/.

4.5. Congruence classes If a is fixed, then the set of all numbers congruent to
a mod m is called the congruence class of a mod m. Using the definitions, you
can check that it is the same set as

aCmZ :D faC km j k 2 Zg:

At this point, we arrive at a subtle yet powerful distinction. I’ll illustrate with a
specific use case:

Example 4.1. To calculate the congruence class of 6Š D 6.5/.4/.3/.2/.1/ mod
7, we could calculate 6Š first, then throw in the 7Z.

But there is a multiplication operation on congruence classes themselves:

.aCmZ/.b CmZ/

:D f.aC jm/.b C km/ j j; k 2 Zg
D fab C akmC jbmC jkm2

j j; k 2 Zg
� fab C `m j ` 2 Zg .` D ak C jb C jkm/

D: ab CmZ:

So we may as well work at the level of the congruence classes. In particular,
we can keep reducing the terms in our work to their (respective) remainders
mod 7 before doing further operations, since these remainders are just different
representatives of the same congruence classes. We get

6Š � 30.12/.2/
Š
� 2.5/.2/ � 10.2/

Š
� 3.2/ � 6 .mod 7/:

(The superscripts Š indicate the reductions to remainders.)

4.6. This also works for calculating the congruence class of a sum, because

.aCmZ/C .b CmZ/

:D f.aC jm/C .b C km/ j j; k 2 Zg
D faC b C `m j ` 2 Zg .` D j C k/

D: .aC b/CmZ:

Example 4.2. To calculate 1C 2C � � � C 99 .mod 7/, we know that we only
need to keep track of the last digit of each summand:

1C 2C � � � C 99 � .1C 99/C .2C 98/C � � � C .49C 51/C 50

�

49 times‚ …„ ƒ
100C 100C � � � C 100C50

� 2.49/C 1 .mod 7/:
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But 7 divides 49, so

2.49/C 1 � 2.0/C 1 � 1 .mod 7/:

4.7. Useful to introduce the notation:

Z=mZ :D fcongruence classes modulo mg

D faCmZ j a 2 Zg
D f0CmZ; 1CmZ; : : : ; .m � 1/CmZg:

4.8. I claim that 1 000 002 cannot be a perfect square. Why?
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5. 2/15

5.1. Last time we introduced Z=mZ, the set of congruence classes mod m. We
showed that the addition and multiplication of integers descends to addition and
multiplication of congruence classes.

Multiplication is the more interesting operation. Here are the multiplication
tables for Z=5Z and Z=6Z:

� 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

� 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

(Above, “a” is an abbreviation for the congruence class aCmZ.) What patterns
do you notice? Qualitatively, how are the tables different?

5.2. To me, the most striking thing is that some of the rows/columns list all the
elements of Z=mZ, while others only list a strict subset.

In the table for Z=5Z, every row/column indexed by a nonzero class is of the
first kind. In the table for Z=6Z, only the rows/columns indexed by 1 or 5 have
this property. For example, if n 2 Z is fixed, then

2x � n .mod 5/

always has a solution for x, but

2x � n .mod 6/

either has no solutions or multiple solutions.
How can we reliably solve the first congruence for x? We know from the table

that 3.2/ � 1 .mod 5/. Therefore x � 3.2x/ � 3n .mod 5/.
As for the second: Solutions exist only when n � 0; 2; 4 .mod 6/: that is,

when n 2 2Z. In each case, there are two solutions mod 6. To build intuition,
consider a similar example with bigger numbers:

12x � n .mod 20/:

This has solutions only when n � 0; 4; 8; 12; 16 .mod 20/: that is, when n 2 4Z.
In each case, there are four solutions mod 20.

5.3. Let’s gather our observations into formal statements.

Theorem 5.1. Fix m 2 N and a; n 2 Z. Then:

ax � n .mod m/ can be solved for x ” n 2 gcd.a; m/Z:
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Proof. This is just a reformulation of our earlier theorem about linear Diophan-
tine equations. Indeed,

ax � n .mod m/ can be solved for x

” ax � n D my can be solved for some x; y 2 Z
” ax C .�m/y D n can be solved for some x; y 2 Z
” n 2 gcd.a;�m/Z;

and we know gcd.a;�m/ D gcd.a; m/.

Theorem 5.2. In Theorem 5.1, if a and m are coprime, then there is exactly one
solution for x mod m.

Proof. Suppose we have x; x0 such that ax � ax0 � n .mod m/. We want to
show that x � x0 .mod m/.

Since gcd.a; m/ D 1, the previous theorem shows that we can solve ab � 1

.mod m/ for b. Of course, this also means ba � 1 .mod m/. Now, we have
x � bax � bax0 � x0 .mod m/.

Theorem 5.3. In Theorem 5.1, the general number of solutions mod m equals
gcd.a; m/.

Proof. We will reduce to the previous theorem. Let d D gcd.a; m/. Let a0 D

a=d and m0 D m=d . We claim that if ax � n .mod m/ has a solution, then
d divides n. Indeed, some x; y 2 Z must solve ax � n D my, in which case
n D ax �my D d.ax �m0y/ 2 dZ.

Therefore, n0 :D n=d is an integer. Moreover,

.x; y/ solves ax � n D my ” .x; y/ solves a0x � n0 D m0y;

as we see from dividing through by d . But on the RHS, gcd.a0; m0/ D 1. So
the solutions for x on the RHS all belong to the same congruence class mod m0.
There are precisely d congruence classes mod m that are contained in a fixed
congruence class mod m0 D m=d .

Example 5.4. To solve 12x � 8 .mod 20/, we first compute gcd.12; 20/ D 4.
In the notation above, a0 D 12=4 D 3 and m0 D 20=4 D 5 and n0 D 8=4 D 2.
The solution to the congruence 3x � 2 .mod 5/ is x � �1 .mod 5/. The
congruence classes mod 20 that are contained in �1C 5Z are

�1C 20Z; 4C 20Z; 9C 20Z; 14C 20Z:

(Note that 19 � 1 .mod 20/.) So the solutions to the original congruence are
x � �1; 4; 9; 14 .mod 20/.
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5.4. Invertibility We have seen that if gcd.a; m/ D 1, then we can solve
ax � 1 .mod m/ for x. In this case, we say that a is invertible modulo m, or a
unit modulo m.

Note that the solution for x is unique modulo m. We say that x is the mul-
tiplicative inverse of a modulo m, and write a�1 in place of x. In spite of the
notation, remember that a�1 2 Z=mZ: It is very different from the fraction
1
a
2 Q.
We write .Z=mZ/� for the set of invertible congruence classes mod m. Thus

.Z=5Z/� D f1C 5Z; 2C 5Z; 3C 5Z; 4C 5Zg;

.Z=6Z/� D f1C 6Z; 5C 6Zg:

One of our observations about the multiplication tables can now be written as:

Theorem 5.5. Fix m 2 N and a 2 Z. The subset

fax CmZ j x 2 Zg � Z=mZ

is all of Z=mZ when a is invertible mod m, and a strict subset otherwise.

5.5. Theorems of Fermat and Wilson Special things happen when the modulus
m is prime. Note that if p is prime and a … pZ, then a is always coprime to p.

Corollary 5.6 (Fermat’s Little Theorem). If p is prime and does not divide
a 2 Z, then ap�1 � 1 .mod p/.

Proof. Since a … pZ, Theorem 5.5 shows that the sequence 0; a; : : : ; a.p � 1/

mod p is just a reshuffling of the sequence 0; 1; : : : ; .p � 1/ mod p. Therefore,
after we exclude the 0 in both lists,

a � a.2/ � � � a.p � 1/ � 1 � 2 � � � .p � 1/ .mod p/:

But the LHS can be rearranged into ap�1 � 1 � 2 � � � .p � 1/ .mod p/. Since each
of 1; 2; : : : ; .p � 1/ is invertible mod p, we can cancel those terms from both
sides, leaving ap�1 � 1 .mod p/.

What is the value of .p � 1/Š � 1 � 2 � � � .p � 1/ .mod p/, anyway? In lieu of
a complete proof, we demonstrate how it works in an example.

Example 5.7. Take p D 7. Then the inverses of 1; 2; 3; 4; 5; 6 .mod 7/ are,
respectively, 1; 4; 5; 2; 3; 6 .mod 7/. We see that 1 and 6 are the only numbers
that get paired up with themselves, i.e., form their own inverses. The rest will
cancel out with their inverses in the product 6Š D 1 � 2 � � � 6. We’re left with
6Š � 1 � 6 � �1 .mod 7/.

The statement for a general prime p is that .p � 1/Š � �1 .mod p/. This is
called Wilson’s theorem.



13

6. 2/17

6.1. A quick reminder: Problem Set 2 has been posted, and is due on 2/27.
Also, we do have class on the Tuesday after Presidents’ Day (2/21), following
schoolwide policy.

6.2. Today is devoted to numerical examples. To start off, can we compute
310 000 .mod 17/?

Last time, we covered Fermat’s Little Theorem: If a 6� 0 .mod p/, then
ap�1 � 1 .mod p/. Since 17 is prime, we can apply this theorem to see that
316 � 1 .mod 17/. Now observe that 10 000 D 104 D 2454. Therefore,

310 000
D .316/54

� 154

� 1 .mod 17/:

This perhaps illustrates the power of the abstraction we’ve been discussing.

6.3. If you didn’t know about Fermat’s theorem, then you might attack the
problem by blindly computing powers of 3 mod 17, hoping for a pattern. This
will, in fact, work. But it turns out to take 16 steps anyway:

n D 1 2 3 4 5 6 7 8 � � �

3n � 3 9 10 13 5 15 11 �1 � � �

I claim that at this point, we immediately know the powers 39; 310; : : : ; 316 as
well. Indeed, 38Ck � 383k � �3k .mod 17/, from which:

n D 9 10 11 12 13 14 15 16 � � �

3n � �3 �9 �10 �13 �5 �15 �11 1 � � �

In particular, although the powers of 3 start repeating past 316 � 1, they do not
start repeating at any earlier point. That is, in this example, Fermat’s exponent
p � 1 is a “tight” lower bound for how high you need to go.

6.4. The tables above tell us a lot of other information. For example, since
34 � 13, we immediately know that

132
� �1; 133

� �13; 134
� 1:

In particular, the powers of 13 repeat with period of length 4. Similarly, the
powers of 9 repeat with period 8, and the powers of 8 repeat with period 2.

6.5. I claim that you can also read off inverses from these tables very quickly.
Recall that the multiplicative inverse of a, if it exists, is the unique value of a�1

such that aa�1 � a�1a � 1.
In our example, we see that we can always find some k such that a � 3k . But

we know 316 � 1, so we must have a�1 � 316�k .
For instance, if a D 11, then writing 11 � 37 shows that a�1 � 316�7 �

39 � �3. We can check that this is right by computing:

11.�3/ � �33 � 1 � 34 � 1 .mod 17/:

If instead a D 12, then writing 12 � �5 � 313 shows that a�1 � 316�13 �

33 � 10.
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6.6. Primitive roots We’ve shown how useful it is to know that every nonzero
congruence class mod 17 is some power of (the congruence class of) 3. We turn
this property into a definition:

An invertible congruence class modulo m is a primitive root iff every invertible
congruence class modulo m is some power of it. Informally, we say that 3 is a
primitive root mod 17. (In this informal language, we would say that �14 and
20 are also primitive roots mod 17.) A useful observation is:

Lemma 6.1. Suppose p is prime and a 6� 0 .mod p/. Then a is a primitive root
if and only if a; a2; : : : ; ap�1 are pairwise distinct mod p.

Proof. By definition, a is a primitive root mod p if and only if each invertible
congruence class mod p is some power of aC pZ. Since p is prime, there are
p � 1 such classes. At the same time, by Fermat, every power of a is congruent
to one of the p � 1 powers a; a2; : : : ; ap�1. So by the pigeonhole principle, the
property holds if and only if that set of powers is exactly the set of invertible
classes, which in turn happens if and only if they’re pairwise distinct.

Example 6.2. Take p D 7. We see that the powers of 2 mod 7 repeat after 2; 4; 1,
so this can’t be a primitive root mod 7. On the other hand, the powers of 3 only
repeat after 3; 2; 6; 4; 5; 1, so we deduce that 3 is a primitive root mod 7, just as
it is mod 17.

Note that we could be certain it was primitive after checking up to 33 � 6 �

�1: Apply the same reasoning as we used in the mod-17 situation.
Also note that 3 is not the only primitive root mod 7 or 17. For instance, since

5 is the inverse of 3 mod 7, we know that 5 is also a primitive root mod 7: In
order, its powers are 5; 4; 6; 2; 3; 1. This is essentially the sequence of powers of
3 in reverse. Similarly, �11 � 6 is the inverse of 3 mod 17, so we know that 6 is
also a primitive root mod 17.

However, in the mod-17 setting, there are more options. I claim that 37 � 11

is also a primitive root. Indeed, our table of the powers of 3 shows (together with
Fermat) that

3n
� 1 .mod 17/ ” 16 divides n:

Since 16 D 24 and 2 does not divide 7, we see that

.37/n
� 1 .mod 17/ ” 16 divides 7n ” 16 divides n:

In fact, the primitive roots mod 17 are precisely (the congruence classes of) 3k

for any k coprime to 16, which we may take in the interval 0 � k < 16. Can you
list all the primitive roots mod 7?

6.7. If the modulus m is composite, then .Z=mZ/� will contain fewer than
m � 1 elements, and we need to be more careful.

Example 6.3. Take m D 12. We see that .Z=12Z/� consists of the classes of
1; 5; 7; 11. But 52 � 72 � 112 � 1 .mod 4/. So we can’t write any of 5; 7; 11

as a power of either of the other two: There are no primitive roots mod 12.


