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SIMPLE ANALYTIC PROOF OF THE PRIME NUMBER THEOREM

D. J. NEWMAN
Dep of Math ics, Temple University, Philadelphia, PA 19122

The magnificent prime number theorem has received much attention and many proofs
throughout the past century. If we ignore the (beautiful) elementary proofs of Erdds [1] and
Selberg [6] and focus on the analytical ones, we find that they all have some drawback. The
original proofs [7] of Hadamard and de la Vallée Poussin were based, to be sure, on the
nonvanishing of {(z) in Re z > 1, but they also required annoying estimates of {(z) at co, the
reason being that formulas for coefficients of Dirichlet series involve integrals over infinite
contours (unlike the situation for power series) and so effective evaluation requires estimates at
0.
The more modern proofs, due to Wiener [2] and Ikehara [8] (see also Heins’s book [3]) do get
around the necessity of estimating at co and are indeed based only on the appropriate
nonvanishing of {(z), but they are tied to certain results on Fourier transforms.

We propose to return to contour integral methods so as to avoid Fourier analysis, and also to
use finite contours so as to avoid estimates at co. Of course certain errors are introduced
thereby, but the point is that these can be effectively esti d away by el y ar

So let us begin with the well-known fact [7] about the {-function:

(z=1)$(2) is analytic and zero free throughout Re z > 1. (1)
This will be assumed throughout and will allow us to give our proof of the prime number
theorem.

In fact we give two proofs. The first one is the shorter and simpler of the two, but we pay a
price in that we obtain one of Landau’s equivalent forms of the theorem rather than the
standard form, m(N)~N/log N. Our second proof is a more direct assault on w(N) but is
somewhat more intricate than the first. Here we find some of Tchebychev’s elementary ideas
very useful.

Basically our novelty consists in using a modified contour integral,

frf(z)N'(—i— + %)dz,
rather than the classical one, [, f(z)N"z~'dz. The method is rather flexible, and we could use it
to directly obtain m(N) by choosing f(z)=log {(z). We prefer, however, to derive both proofs
from the following convergence tk Actually, this th dates back to Ingham [9], but
his proof is a la Fourier analysis and is much more complicated than the contour integral
method we now give.

THEOREM. Suppose |a,| <1 and form the series Ta,n~* which clearly converges to an analytic
Sfunction F(z) for Rez> 1. If, in fact, F(z) is analytic throughout Rez > 1, then Za,n"* converges
throughout Re z > 1.

Proof of the convergence theorem.. Fix a w in Re w > 1. Thus F(z+ w) is analytic in Re z >0.
We choose an R > 1 and determine §=8(R)>0, 8 < ; and an M= M(R) so that

F(z+w) is analytic and bounded by M in—8 <Rez,|z|<R. )
Now form the counterclockwise contour T, bounded by the arc |z|=R,Re z>—§, and the
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1. Introduction and Overview

There are several interesting functions in number theory
whose tables look quite irregular, but which exhibit sur-
prising asymptotic regularity asx = . A notable example
is the function m(x) which counts the number of primes p
not exceeding x.

1.1. The Famous Prime Number Theorem

x
ax)= L 1~—— as x—reo, 1:1
€= 1~ a1
was surmised already by Legendre and Gauss. However, it
took a hundred years before the first proofs appeared, one
by Hadamard and one by de la Vallée Poussin (1896). Their
and all but one of the subsequent proofs make heavy use
of the Riemann zeta function. (The one exception is the
long so-called elementary proof by Selberg [11] and Erdés
[“1)
For Re s > 1 the zeta function is given by the Dirichlet
series

D. J. Newman

On Newman’s Quick Way to the Prime Number

t0=2 L. (1.20)
in

By the unique representation of positive integers n as
products of prime powers, the series may be converted
to the Euler product (cf. [5])

1 1 1,1
m)=(“E+;‘F+H')(1+?+T+m)m

-1 l,,—r (120)
i

The above function element is analytic for Re s > 1 and
can be continued across the line Re s =1 (Fig. 1). More
precisely, the difference

1
HORS -1
can be continued analytically to the half-plane Re s > 0
(cf. § B.1 in the box on p. 111) and in fact to all of €. The

essential property of {(s) in the proofs of the prime num-
ber theorem is its non-vanishing on the line Re s = 1

Res =1

Figure 1

Newman’s Short Proof of the Prime
Number Theorem

D. Zagier

Dedicated to the Prime Number Theorem on the occasion of its 100th birthday

The prime number theorem, that the number of primes < x is asymptotic to
x/log x, was proved (independently) by Hadamard and de la Vallée Poussin in
1896. Their proof had two elements: showing that Riemann’s zeta function {(s)
has no zeros with R(s) = 1, and deducing the prime number theorem from this.
An ingenious short proof of the first assertion was found soon afterwards by the
same authors and by Mertens and is reproduced here, but the deduction of the
prime number theorem continued to involve difficult analysis. A proof that was
elementary in a technical sense—it avoided the use of complex analysis—was
found in 1949 by Selberg and Erdds, but this proof is very intricate and much less
clearly motivated than the analytic one. A few years ago, however, D. J. Newman
found a very simple version of the Tauberian argument needed for an analytic
proof of the prime number theorem. We describe the resulting proof, which has a
beautifully simple structure and uses hardly anything beyond Cauchy’s theorem.

Recall that the notation f(x) ~g(x) (“f and g are asymptotically equal”)
means that lim, . f(x)/g(x) = 1, and that O(f) denotes a quantity bounded in
absolute value by a fixed multiple of f. We denote by 7(x) the number of primes
<x.

Prime Number Theorem. m(x) ~ ﬁ as x - .

We present the argument in a series of steps. Specifically, we prove a sequence
of properties of the three functions

= 1 lo
()= X =, &)= —g,p, 9(x)= Ylogp (s€C, xeR);
nat 1t p P px

we always use p to denote a prime. The series defining {(s) (the Riemann zeta-
function) and ®(s) are easily seen to be absolutely and locally uniformly conver-
gent for R(s) > 1, so they define holomorphic functions in that domain.

M. £(s) =T1,(1 = p~*)~" for R(s) > 1.

Proof: From unique factorization and the absolute convergence of {(s) we have

. 1
(s)= ¥ (@3 = H( ZP"‘) =My== (R >0.
0 )2 p

ra, ry, - 2 P rz0
M. {(s) ~ L extends holomorphically to 9(s) > 0.
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For sections specified by email:

What is the goal? How does it fit into the larger proof? How do you know?




What is the goal?
How does it fit into the larger proof?

Newman, 1980
The American Mathematical Monthly

Second Proof of the Prime Number Theorem. In this section we begin with Tchebychev’s
observation [S] that

> 1—01%2 —logn is bounded, (12)

pP<n

which he derives in a direct elementary way from the prime factorization of n!.
The point is that the prime number theorem is easily derived from

lo
2 gP

—logn converges to a limit, (13)
p<n

by a simple summation by parts, which we leave to the reader. Nevertheless the transition from
(12) to (13) is not a simple one and we turn to this now.
So form, for Re z > 1, the function

fo= 3 (g L) 82( 5 L)

i ni\,<n P P n>p I
Now :
1 1 w]l-—{t} P 1
— =tz dt= +4
nsp B° (z—1p*~! f AR (z—l)(p’——l p(z))
where A,(z) is analytic for Rez >0 and is bounded by
1 lz(z— D)
px(px_l) _ xp"“ k
Hence
_ 1 log p
&= (S 2 +4@),
where A(z) is analytic for Re z >3 by the Weierstrass M-test.
By Euler’s factorization formula, however, we recognize that
logp _ —d .
; pz_l —E—logf(z), (14)

and so we deduce, by (1), that f(z) is analytic in Re z < 1 except for a double pole with principal
part 1/(z—1)*+c¢/(z—1), at z=1. Thus if we set Podc



First idea. We try to estimate G(0) — G (0) with the aid of
Cauchy’s formula. Thus we look for a suitable path of
What is the goal? integration W around 0. The simplest choice would be a
How does it fit into the larger proof? circle, but we can not go too far into the left half-plane
because we know nothing about G(z) there. So for given
R > 0, the positively oriented path W will consist of an
Korevaar, 1982 arc of the circle |z | = R and a segment of the vertical
The Mathematical Intelligencer line Re z = —§ (Fig. 2). Here the number § =8(R)> 0
is chosen so small that G(z) is analytic on and inside W.
We denote the part of Win Re z > 0 by W, the part
in Re z <0 by W_. By Cauchy’s formula,

1 1
G(0) - Gr(0) = 5 [ {G(2) — GA(@)} —dz. (22)
i W z
We have the following simple estimates:
forx=Rez >0,

1G@) — Ga@)| = | [ Fit)e~"dt| < | e~**dt = % e,
A A

(2.3)
forx =Re z <0,

A A
1G\@)| = | | F(f)e 'dt| < [ e*'dt < I?ll M. (24)
0 0



What is the goal?
How does it fit into the larger proof?
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Hx)z )Y logp= Y (1-¢€)logx

x'"t<p<xx x'"f<p<x

= (1 — €)log x[m(x) + O(x'~)].

Proof of the Analytic Theorem. For 7 > 0 set g,(z) = f "f(t)e *' dt. This is
0

clearly holomorphic for all z. We must show that lim, _, . g+(0) = g(0).

Let R be large and let C be the boundary of the region {z € C| |z| <R,
R(z) = — 68}, where 8> 0 is small enough (depending on R) so that g(z) is
holomorphic in and on C. Then

2

1 4
8(0) = g7(0) = 5— [ (8(2) —8r(2)e”" |1 + 55

by Cauchy’s theorem. On the semicircle C.= C N {R(z) > 0} the integrand is
bounded by 2B/R?, where B = max, , ol f(¢)|, because

dz

Z

= ” e—ﬂt(z)T
= - -2t B “dt= —— (R >0
() —gr(2)| =|[ f()e dt) < B le~ldr = =g (R(2) > 0)
and
2
eT|11 + z_ l = eNT . w
R? |z R?

Hence the contribution to g(0) — g-(0) from the integral over C, is bounded in
absolute value by B/R. For the integral over C_= C N {R(z) < 0} we look at
g(z) and g,(z) separately. Since g, is entire, the path of integration for the
integral involving g can be replaced by the semicircle C. = {z € C| |z| = R,
N(z) < 0}, and the integral over C’_ is then bounded in absolute value by 27 B /R



Meet readers’ needs with

GUIDING TEXT

Ensure readers know

— WHAT you’re doing
— WHY you’re doing it
— HOW you’re doing it

Always tell readers

contours (unlike the situation for power series) and so effective evaluation requires estimates at
0.
The more modern proofs, due to Wiener [2] and Ikehara [8] (see also Heins’s book [3]) do get
around the necessity of estimating at oo and are indeed based only on the appropriate
nonvanishing of {(z), but they are tied to certain results on Fourier transforms.

We propose to return to contour integral methods so as to avoid Fourier analysis, and also to
use finite contours so as to avoid estimates at co. Of course certain errors are introduced
thereby, but the point is that these can be effectively estimated away by elementary arguments.

So let us begin with the well-known fact [7] about the {-function:

(z—1)§(2) is analytic and zero free throughout Re z > 1. (1)

This will be assumed throughout and will allow us to give our proof of the prime number
theorem.

In fact we give two proofs. The first one is the shorter and simpler of the two, but we pay a
price in that we obtain one of Landau’s equivalent forms of the theorem rather than the
standard form, m(N)~N/log N. Our second proof is a more direct assault on #(N) but is
somewhat more intricate than the first. Here we find some of Tchebychev’s elementary ideas
very useful.

Second Proof of the Prime Number Theorem. In this section we begin with Tchebychev’s
observation [5] that

> log p —logn is bounded, (12)

p<n

which he derives in a direct elementary way from the prime factorization of n!.
The point is that the prime number theorem is easily derived from

> log p —logn converges to a limit, (13)
ps<n

by a simple summation by parts, which we leave to the reader. Nevertheless the transition from
(12) to (13) is not a simple one and we turn to this now.




Meet readers’ needs with

SENTENCE STRUCTURE

Which sentence would you expect to come next? 1 or 2?

“Some astonishing questions about the nature of the universe have been raised by scientists exploring
the nature of black holes in space.”

1. The collapse of a dead star into a point perhaps no larger than a marble creates a black hole.

2. Ablack hole is created by the collapse of a dead star into a point perhaps no larger than a marble.

“Put in the topic position the old information that links backward...”

Gopen & Swan, “The Science of Scientific Writing”



Meet readers’ needs with

SENTENCE STRUCTURE

Which sentence would you expect to come next? 1 or 2?

“| ate cookies yesterday.”

1. VYesterday it started to rain at 2pm.

2. The cookies were green.

“Put in the topic position the old information that links backward; put in the stress
position the new information you want the reader to emphasize.”

Gopen & Swan, “The Science of Scientific Writing”



“Put in the topic position the old information that links backward; put in the stress
position the new information you want the reader to emphasize.”

Known-to-new structure creates “flow.”

Here, Blue = known; Red = new
LIILEracy WILIL LI NeIgioornooas ol dlgeurdIL varieules.

To describe a. broam we recall the wave packet decomposmon of Ef introduced by
Bourgain (cite!). The wave packet decomposltlon says that inside a large ball of radius
R, we can decompose E f 1nto a sum over Wave packets Efgy. Each wave packet E fov 1s
essentially supported in a’ e T w of leng'th R, radius Rl/2 The axis of Ty, points in
a direction depending only on 6 and the locatlon of Tg, is described by v. The absolute

value of a wave packet |Efp,,| i is approx1mately a cemstant function on Tg v-

T el s e e innd e ®ocind  wea lisatsanii e ws endlBecedWecrey | we il . SRR, el ged iy o O




Revise to improve known-to-new flow.

The Catalan numbers enumerate many things. For example, the nt" Catalan
number counts the number of Dyck paths of length 2n. Full binary trees
with n internal vertices are in bijection with Dyck paths of length 2n.
Therefore full binary trees are also enumerated by the Catalan numbers.

Sample revision:

The Catalan numbers enumerate many things. For example, the nt" Catalan
number counts the number of Dyck paths of length 2n. Dyck paths of
length 2n are in bijection with full binary trees with n internal vertices.
Therefore full binary trees are also enumerated by the Catalan numbers.



Look for and fill gaps in flow that may slow (or prohibit!) comprehension.

Plugging our initial values into (2) we see the expression simplifies to 2+2.
Four is less than...

Plugging our initial values into (2) we see the expression simplifies to 2+2.
Perfect squares have the property...

Plugging our initial values into (2) we see the expression simplifies to 2+2,
which is a perfect square. Perfect squares have the property...

Which gaps slow reading depends on the audience.



Known-to-new structure creates “flow.”

Here, Blue = known; Red = new
LIILEracy WILIL LI NeIgioornooas ol augeurdlc variletlies.

To describe a. broem we recall the wave packet decompos1t10n of Ef introduced by
Bourgain (cite!). The wave packet decomposmon says that inside a large ball of radius
R, we can decompose E f 1nto a sum over Wave packets Efgy. Each wave packet E fov 1s

essentially supported in a tube. Tgv of length R, radius Rllz The axis of T,y points in

a direction depending only on 0 and the locatlon of Ty, is described by v. The absolute
value of a wave packet |[Efp.,] i is approx1mately a censtant function on Tg hi

T el cnaedio i n®oe s o Boarnineuy §8un o szl B | Gz T SRS, Aoitel e i

Text is inherently one dimensional: one long thread of text. But logic is not!



A proof’s logic

One thread could use
known-to-new flow.

How can we pull the
various threads
together?
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Connect threads via

Guiding text

Ensure readers know

— WHAT you’re doing
— WHY you’re doing it
— HOW you’re doing it

contours (unlike the situation for power series) and so effective evaluation requires estimates at
0.
The more modern proofs, due to Wiener [2] and Ikehara [8] (see also Heins’s book [3]) do get
around the necessity of estimating at oo and are indeed based only on the appropriate
nonvanishing of {(z), but they are tied to certain results on Fourier transforms.

We propose to return to contour integral methods so as to avoid Fourier analysis, and also to
use finite contours so as to avoid estimates at co. Of course certain errors are introduced
thereby, but the point is that these can be effectively estimated away by elementary arguments.

So let us begin with the well-known fact [7] about the {-function:

(z—1)§(2) is analytic and zero free throughout Re z > 1. (1)

This will be assumed throughout and will allow us to give our proof of the prime number
theorem.

In fact we give two proofs. The first one is the shorter and simpler of the two, but we pay a
price in that we obtain one of Landau’s equivalent forms of the theorem rather than the
standard form, m(N)~N/log N. Our second proof is a more direct assault on #(N) but is
somewhat more intricate than the first. Here we find some of Tchebychev’s elementary ideas
very useful.

Second Proof of the Prime Number Theorem. In this section we begin with Tchebychev’s
observation [5] that

> log p —logn is bounded, (12)

p<n

which he derives in a direct elementary way from the prime factorization of n!.
The point is that the prime number theorem is easily derived from

> logp —logn converges to a limit, (13)
ps<n

by a simple summation by parts, which we leave to the reader. Nevertheless the transition from
(12) to (13) is not a simple one and we turn to this now.




Connect known-to-new threads via

Guiding text

Guiding text:

To show f is continuous,
we prove in Section 2 that
it suffices to show...;

then in Section 3...

Gwian: X, Y withnte spaces
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Summary: As you revise

* Who is the audience? What do they know and care about?

* For each chunk of text, will your audience know

— What you’re doing?

— Why you’re doing it?

f not, add guiding text.

* Does each sentence use known-to-new structure?

f not, turn sentences around &/or fill gaps in flow.

The goal: to craft text that reveals to your audience
the flow and structure of the underlying logic.



Beware “superficial flow”

The market-determinet~arice of a bond with fixed, knowil cash flows determines
the bond’s internal rate of rettmsn, or yield. Different yields are typically approx-
imately equal. Approximations cam™ee prévided by Taylor series. The Taylor
series is due to James Gregory of<5Cotlant~.Scotland has 790 islands, includ-

ing the Northern Isles and-tfie Hebrides, according to Wikipedia. Wikipedia
occasionally asks for.eGnations.

“FLOW” SHOULD HELP READERS FOLLOW THE FLOW OF THE LOGIC



