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Abstract. In this expository paper, we discuss the background and proof of
quadratic reciprocity using Gauss sums. Reciprocity laws are important results
in algebraic number theory, and understanding the application of Gauss sums is
an important step in the process. We introduce these sums and related objects
through the discrete Fourier transform and demonstrate how the computation
of Gauss sums can be used to access quadratic reciprocity.

1. Introduction

An important question in elementary number theory is to determine when an
integer is congruent to a perfect square modulo a prime. The quadratic reciprocity
law, along with its supplements, essentially resolves this question by providing an
easily computable method to make this determination. In this expository paper, we
will discuss the theory of quadratic reciprocity as well as some related ideas.

Definition 1.1. Let m and n be integers with n positive. We say that m is a
quadratic residue modulo n if there exists an integer x for which x2 ≡ m (mod n).
We say that m is a quadratic nonresidue modulo n if there is no such x (i.e. m
is not a quadratic residue).

To keep track of quadratic residues modulo an odd prime p, we have the Legendre
symbol.

Definition 1.2. The Legendre symbol
(
·
p

)
: Fp → C is defined to be

(
a

p

)
:=


1 if a is a nonzero quadratic residue mod p;

−1 if a is a quadratic nonresidue mod p;

0 if a = 0.

It is straightforward to check the following fact (e.g. using factorization over
Fp[X]).

Proposition 1.3 (Euler’s criterion). We have that
(
a
p

)
≡ a

p−1
2 (mod p).

This immediately implies that the Legendre symbol is multiplicative. Additionally
when a = −1, both sides of the congruence are in {±1} and equality actually holds.

Corollary 1.4. We have that
(
−1
p

)
= (−1)

p−1
2 .

We can now state the main theorem.

Theorem 1.5 (Quadratic reciprocity). If p and q are distinct odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2 ·

q−1
2 .
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Equivalently, we have that
(
p
q

)
=
(
q
p

)
if and only if p and q are not both 3 mod 4.

There are many known proofs of quadratic reciprocity in the literature, including
eight given by Gauss. The most common proof involves a counting argument on a
grid that is mostly symmetrical in the variables p and q (see Chapter 5 of [AZ10]).
In this paper, we focus instead on a more algebraic proof that requires breaking the
symmetry in the theorem. This will be done through the quadratic Gauss sum which
encodes important information about the Legendre symbol into an exponential sum.
The Gauss sum appears as an important object in many parts of number theory
beyond the discussion of quadratic residues, but we primarily concern ourselves with
the relevant properties involved in quadratic reciprocity.

This paper is split into several sections. In Section 2, we introduce preliminaries
of the discrete Fourier transform. In Section 3, we define the Gauss and Jacobi sums,
then evaluate important properties of the Gauss sum. In Section 4, we prove the
quadratic reciprocity law using Gauss sums. Then we discuss supplements to the
theorem and how to apply it. In Section 5, we discuss the general implications of
the framework that we have used to prove quadratic reciprocity, particularly in the
context of higher order reciprocity laws. The presentation of quadratic reciprocity
roughly follows and generalizes that of Terras in Chapter 8 of [Ter99].

1.1. Acknowledgements. The author would like to thank Minh-Tâm Trinh for
providing resources and guidance throughout the process of writing this paper, as
well as suggesting the topic. The author would also like to thank Alan Peng for
providing useful feedback in peer review. This paper was written as part of MIT’s
Undergraduate Seminar in Algebra (18.704).

2. Discrete Fourier transform

A key tool in the study of Gauss sums is the discrete Fourier transform over a
cyclic group Z/nZ for n > 1. We present a brief introduction which will allow us to
use it to analyze functions. Let ζn = e

2πi
n .

Definition 2.1. The discrete Fourier transform of a function f : Z/nZ→ C is
f̂ : Z/nZ→ C given by

f̂(r) :=
∑

a∈Z/nZ

f(r)ζ−arn .

The definition lends its way to a few basic properties.

Proposition 2.2. The discrete Fourier transform satisfies the following properties:

• (linearity) The map f 7→ f̂ is a linear operator on the space of functions
from Z/nZ to C.
• (negation of parameter) If g(x) = f(−x), then ĝ(r) = f̂(−r).
• (conjugation) We have that f̂(r) = f̂(−r).

2.1. Theory of the discrete Fourier transform. One main motivating force
behind Fourier analysis is that it provides the theory of exponential functions as a
basis for the space of functions. Indeed, the following theorem formalizes this for
discrete Fourier analysis.
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Theorem 2.3 (Fourier inversion). For any f : Z/nZ→ C, we have that

f(a) = 1
n

∑
r∈Z/nZ

f̂(r)ζarn = 1
n

ˆ̂
f(−a).

The Fourier transform also provides a useful way to analyze an alternate form of
multiplication.

Definition 2.4. The convolution of two functions f, g : Z/nZ→ C is f∗g : Z/nZ→
C given by

(f ∗ g)(a) :=
∑
b+c=a
b,c∈Z/nZ

f(b)g(c) =
∑

b∈Z/nZ

f(b)g(a− b).

Proposition 2.5. For any f, g : Z/nZ→ C, we have that f̂ ∗ g = f̂ · ĝ.

Remark 2.6. Of course, we can iterate convolution and Proposition 2.5 to more
functions. It is straightforward to check that convolution is associative and that the
Fourier transform of f ∗ g ∗ h is the product of the Fourier transforms f̂ , ĝ, and ĥ.
This can be extended for the case of even more functions. Because convolution is
associative, we can write f∗k to denote the k-fold convolution f ∗ f ∗ · · · ∗ f (also
known as the convolution power).

The discrete Fourier transform also satisfies many more properties besides these
with additional theory behind it. For a more complete picture of the Fourier
transform as well as proofs of the above properties, we defer the reader to Chapter
2 of [Ter99].

3. Gauss sums

In this section, we discuss the Gauss sums of Dirichlet characters modulo an
integer n > 1. This is a more general overview of Gauss sums than we will need,
but allows for study of other related objects.

3.1. Dirichlet characters. The study of Gauss sums concerns a specific class of
characters, the Dirichlet characters.

Definition 3.1. We say that χ : Z→ C is a Dirichlet character modulo n if
for all integers a and b,

• (multiplicative) χ(ab) = χ(a)χ(b);
• (periodic) χ(a+ n) = χ(a); and
• χ(a) = 0 if and only if gcd(a, n) 6= 1.

Euler’s theorem (equivalently Lagrange’s theorem for multiplicative groups of
integers) implies that the values of χ are actually quite constrained.

Proposition 3.2. If gcd(a, n) = 1, then χ(a) is a ϕ(n)-th root of unity.

Example 3.3. The most basic example of a Dirichlet character modulo n is the
trivial character:

χ0(a) :=

1 if gcd(a, n) = 1;

0 if otherwise.
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Example 3.4. The Legendre symbol, extended to the domain Z by applying the
“mod p” map, is a Dirichlet character modulo p. This follows from Euler’s criterion.

We can also go in the other direction — that is, we can treat a Dirichlet character
as a function χ : Z/nZ→ C. When we consider the entire set of Dirichlet characters
modulo a fixed n, we have additional structure which can be proven by applying
the definitions.

Proposition 3.5. Fix an integer n > 1. The set of Dirichlet characters modulo n
forms a group under multiplication with identity χ0 and inverse map χ 7→ χ. This
group is isomorphic to (Z/nZ)×.

In the case that the modulus is prime, we have useful results involving the Fourier
transform.

Proposition 3.6. Let χ be a nontrivial Dirichlet character modulo some prime p.
Then χ̂(r) = χ(−r)χ̂(−1).

Proof. We first deal with the case that r ∈ (Z/pZ)×. We can directly compute the
Fourier transform χ̂(r) as∑

a∈Z/pZ

χ(a)ζ−arp
b=−ar=

∑
b∈Z/pZ

χ(−br−1)ζbp = χ(−r)−1
∑

b∈Z/pZ

χ(b)ζbp

which simplifies to the desired expression.
Now, we settle the r = 0 case. Let c ∈ Z/pZ such that gcd(c, p) = 1 and χ(c) 6= 1

(possible because χ is nontrivial). Then

χ(c)χ̂(0) = χ(c)
∑

a∈Z/pZ

χ(a) =
∑

a∈Z/pZ

χ(ca) b=ca=
∑

b∈Z/pZ

χ(b) = χ̂(0)

from which it follows that χ̂(0) = 0. �

Remark 3.7. The statement still holds when the modulus is not prime and the input
is relatively prime to the modulus, with identical proof. When the input is not
relatively prime, things get more complicated and the same proof does not work.

3.2. Gauss sum. The formula for the Fourier transform of a Dirichlet character
motivates the following definition.

Definition 3.8. The Gauss sum of a Dirichlet character χ is g(χ) := χ̂(−1).

While computing the Gauss sum is hard in general, we can evaluate some
properties with ease.

Proposition 3.9. Let χ be a nontrivial Dirichlet character modulo some prime p.
Then g(χ)g(χ) = χ(−1)p and |g(χ)| = √p.

Proof. The Fourier transform of Proposition 3.6 gives that ˆ̂χ(a) = χ̂(−a)χ̂(−1).
Applying inversion gives that χ(−a) = 1

p
ˆ̂χ(a). Combining these at a = 1 results in

the first equality. But χ̂(−a) = χ̂(a), so combining the two equations at a = −1
results in the second equality. �
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3.3. Quadratic Gauss sum. We can simplify Proposition 3.6 in the case of the
Legendre symbol for an odd prime p because all values of the symbol are real. Let
hp(a) :=

(
a
p

)
be the character and gp := g(hp) be the quadratic Gauss sum.

Corollary 3.10. We have that ĥp(r) =
(
−r
p

)
gp.

Remark 3.11. Because
(
−r
p

)
= hp(r)

(
−1
p

)
, this implies that the Legendre symbol

and its Fourier transform are proportional to each other. Additionally, with r = 0
this recovers the fact that there are equally many nonzero quadratic residues as
quadratic nonresidues (which also follows from Euler’s criterion).

Similarly, Proposition 3.9 can be simplified for hp. For notational purposes, let
p∗ = (−1)

p−1
2 p ∈ Z.

Corollary 3.12. We have that g2
p = p∗.

A natural follow-up question is to determine the sign of the quadratic Gauss sum,
i.e. compute the value of gp. For arbitrary Dirichlet characters, this problem is not
easily resolvable. But here, Gauss evaluated this sum.

Proposition 3.13. We have that

gp =


√
p if p ≡ 1 (mod 4);

i
√
p if p ≡ 3 (mod 4).

This can be proven by looking at the matrices of the Fourier transform with
respect to multiple bases of the space of functions from Z/pZ to C. For a full proof,
see Chapter 8 of [Ter99].

3.4. Jacobi sum. The Jacobi sum is a closely related object to the Gauss sum.

Definition 3.14. Let χ1, χ2 be Dirichlet characters modulo some prime p. The
Jacobi sum of the characters is J(χ1, χ2) := (χ1 ∗ χ2)(1).

Proposition 3.15. Let χ1, χ2 be Dirichlet characters modulo some prime p such
that χ1χ2 is nontrivial. Then J(χ1, χ2) = g(χ1)g(χ2)

g(χ1χ2) .

We prove the following more general proposition about an iterated Jacobi sum.

Proposition 3.16. Let χ1, . . . , χk be Dirichlet characters modulo some prime p
such that χ1 · · ·χk is nontrivial. Then

(χ1 ∗ · · · ∗ χk)(1) = g(χ1) · · · g(χk)
g(χ1 · · ·χk) .

Proof. For notational purposes, let C = χ1 ∗ · · · ∗ χk. Observe that

g(χ1) · · · g(χk) = χ̂1(−1) · · · χ̂k(−1) = Ĉ(−1).

But C(a) = χ1(a) · · ·χk(a)C(1) because∑
a1+···+ak=a

χ1(a1) · · ·χk(ak)
a′i=ai/a= χ1(a) · · ·χk(a)

∑
a′1+···+a′

k
=1

χ1(a′1) · · ·χk(a′k),
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so

g(χ1) · · · g(χk) =
∑

a∈Z/pZ

C(a)ζap =
∑

a∈Z/pZ

χ1(a) · · ·χk(a)C(1)ζap .

We can pull out a factor of C(1) and divide by g(χ1 · · ·χk) to finish because
Proposition 3.9 implies that the Gauss sum of a nontrivial Dirichlet character is
nonzero. �

By applying Proposition 3.16 to a fixed Dirichlet character χ and requiring
χk = χ, we have the following result.

Corollary 3.17. Let χ be a nontrivial Dirichlet character modulo some prime p,
and k be a positive integer such that the order of χ (as an element of the group of
Dirichlet characters) divides k − 1. Then χ∗k(1) = g(χ)k−1.

3.5. Similarities to gamma function. The Gauss and Jacobi sums bear similar-
ities to the gamma and beta functions in analysis and integration. The gamma
function is defined on the right half-plane to be

Γ(z) :=
∫ ∞

0
tz−1e−t dt

while the beta function for x, y on the right half-plane is defined to be

B(x, y) :=
∫ 1

0
tx−1(1− t)y−1 dt.

Already in the definitions we can see similarities — with appropriate choice of
differential and basis, the gamma function can be interpreted as a coefficient of
tz and the beta function as a unit convolution of tx and ty. We also have the
well-known formula that B(x, y) = Γ(x)Γ(y)

Γ(x+y) , which can be proven in precisely the
same way as our proof of Proposition 3.15. Furthermore, Proposition 3.9 can be
interpreted as a reflection formula, similar to Euler’s reflection formula which states
that Γ(z)Γ(1 − z) = π

sin(πz) . Refer to Table 1 for a concise comparison between
Gauss sums and Gamma functions.

Object Gauss sum Gamma function

Exp. sum/integral g(χ) Γ(z)
Unit convolution J(χ1, χ2) B(x, y)

Evaluation J = g(χ1)g(χ2)
g(χ1χ2) B = Γ(x)Γ(y)

Γ(x+y)

Reflection g(χ)g(χ) = χ(−1)p Γ(z)Γ(1− z) = π
sin(πz)

Table 1. Counterparts between Gauss sums and Gamma functions.

4. Quadratic reciprocity

In this section, we prove the quadratic reciprocity law using the discrete Fourier
transform and Gauss sums. We provide two similar proofs, the first of which relies
more on the Fourier transform while the second is more algebraic in nature. We
also provide supplements which allow for easy computation of quadratic residues.
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4.1. Proof of quadratic reciprocity. This proof takes advantage of the iterated
Jacobi sum to evaluate gq−1

p mod q in two ways — first by expanding the iterated
Jacobi sum, then by using the previously computed value of g2

p. This proof is
modified from a proof given by Rademacher in [Rad64].

Proof of Theorem 1.5. The order of hp as a Dirichlet character is 2, so we can
combine Corollary 3.17 at k = q with Corollary 3.12 to get that h∗qp (1) = (p∗)

q−1
2 .

The left hand side is

h∗qp (1) =
∑

a1+a2+···+aq=1

(
a1a2 · · · aq

p

)
=
(
q−q

p

)
+

∑
a1+a2+···+aq=1
ai not constant

(
a1a2 · · · aq

p

)
.

The indices of this last sum can be grouped into collections of (a1, a2, . . . , aq) and
its cyclic shifts1. Each collection corresponds to q identical summands, so the total
sum is 0 mod q. Consequently, h∗qp (1) ≡

(
q−q

p

)
≡
(
q
p

)
(mod q).

We also have that the right hand side is (p∗)
q−1

2 ≡
(
p∗

q

)
(mod q) by Euler’s

criterion. It follows that
(
q
p

)
≡
(
p∗

q

)
(mod q). But both sides of this congruence

are in {±1}, so they must be equal. Rearranging terms gives us the statement of
quadratic reciprocity. �

Let us review the ingredients of this proof. We do not use much more than the
facts developed in Section 3. The steps required are:

(1) Compute the Fourier transform of a Dirichlet character (Proposition 3.6).
(2) Compute the reflection formula for Gauss sums (Proposition 3.9).
(3) Compute the iterated Jacobi sum (Proposition 3.16).
(4) Interpret the above results for the Legendre symbol.
(5) Combine an elementary counting argument (cyclic shifts) with an elementary

number theoretical argument (Euler’s criterion) to finish.

It is stunning how simply the result falls out once we have applied our Fourier
toolbox to the problem.

4.2. Another proof of quadratic reciprocity. Once again, we compute a power
of gp mod q in two ways — first by evaluating the q-th power of the Fourier definition
of gp, then by using the previously computed value of g2

p. Many parts of this proof
correspond to parts of the previous proof, but computed algebraically. This proof is
closer in nature to Gauss’s original application of his namesake sums.

Proof of Theorem 1.5. Work in Z[ζp]. Observe that

gqp = (ĥp(−1))q =
(
p−1∑
a=0

hp(a)ζap

)q
≡

p−1∑
a=0

(
hp(a)ζap

)q (mod q)

by properties of the Frobenius endomorphism. But hp(a)q = hp(a) because q is
odd, so the right hand side just turns into ĥp(−q). But Corollary 3.10 implies that
ĥp(−q) =

(
q
p

)
gp, so gqp ≡

(
q
p

)
gp (mod q).

1This idea is perhaps more commonly used in the classic “necklace” proof of Fermat’s little
theorem, given by Golomb (see [Gol56]).
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At this point, it might be tempting to divide by gp. However, the ring Z[ζp]/(q)
is not necessarily an integral domain, so we cannot divide2. Instead, we multiply by
gp to get that gq+1

p ≡
(
q
p

)
g2
p (mod q).

Now, combine Corollary 3.12 for p with Euler’s criterion for q to deduce that
gq−1
p ≡

(
p∗

q

)
(mod q). Combining this with the previous paragraph and Corollary

3.12 gives that p∗
(
p∗

q

)
≡ p∗

(
q
p

)
(mod q) over Z[ζp]. Both sides of this equation

are in Z, so we can treat this as a congruence modulo q over Z and divide out by p∗

(which is not divisible by q) to get that
(
p∗

q

)
≡
(
q
p

)
(mod q). We can finish as in

the previous proof. �

4.3. Supplements. To complete the picture of quadratic residues, we must deal
with negative numbers and even numbers. For negative numbers, Corollary 1.4 gives
us a handle already. All that remains is the even prime 2.

Proposition 4.1. We have that
(

2
p

)
= (−1)

p2−1
8 .

Proof. Work in Z[ζ8], and let y = ζ8 + ζ−1
8 so that y2 = 2.

If p ≡ ±1 (mod 8), then yp ≡ ζp8 + ζ−p8 (mod p). But {ζp8 , ζ
−p
8 } = {ζ8, ζ−1

8 } so
ζp8 + ζ−p8 = ζ8 + ζ−1

8 = y and hence yp ≡ y (mod p). As before, we cannot divide
by y, but multiplying by y again does the trick because Euler’s criterion implies
that yp−1 ≡

(
2
p

)
(mod p) so

(
2
p

)
= 1.

In the case that p ≡ ±3 (mod 8), then everything is the same except {ζp8 , ζ
−p
8 } =

{−ζ8,−ζ−1
8 }. As a result, all signs thereafter get flipped so

(
2
p

)
= −1. �

This gives us enough information to compute any Legendre symbol.

Example 4.2. To determine if 167 is a quadratic residue modulo 101, we can do
the following sequence of computations:(

167
101

)
=
(

66
101

)
=
(

2
101

)(
3

101

)(
11
101

)
= (−1)

(
101
3

)(
101
11

)
= (−1)

(
2
3

)(
2
11

)
= (−1) (−1) (−1)

= −1.

So no, 167 is not a quadratic residue modulo 101.

4.4. Jacobi symbol. To make computations easier, we can consolidate information
into a single symbol.

Definition 4.3. Let n be an odd positive integer, and write n = p1p2 · · · pk for (not
necessarily distinct) odd primes p1, p2, . . . , pk. The Jacobi symbol

( ·
n

)
: Z→ C

is defined to be (a
n

)
:=
(
a

p1

)(
a

p2

)
· · ·
(
a

pk

)
.

We can directly check that the Jacobi symbol inherits many properties from the
Legendre symbol. The proofs of these properties follow from building up an integer
prime-by-prime.

2One can work around this issue by setting up a different proof over Fq [ζp], but this has other
subtleties to deal with.
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Proposition 4.4. The following hold:

(1)
(
ab
c

)
=
(
a
c

) (
b
c

)
(2)

(
a
bc

)
=
(
a
b

) (
a
c

)
(3) If a ≡ b (mod c), then

(
a
c

)
=
(
b
c

)
.

(4)
(−1
n

)
= (−1)

n−1
2

(5)
( 2
n

)
= (−1)

n2−1
8

(6) If m,n are odd and relatively prime, then
(
m
n

) (
n
m

)
= (−1)

m−1
2 ·n−1

2 .

If we try the computation in Example 4.2 now, we will find ourselves doing much
less work.

Example 4.5. To determine if 167 is a quadratic residue modulo 101, we can do
the following (simpler) sequence of computations:(

167
101

)
=
(

66
101

)
=
(

2
101

)(
33
101

)
=
(

2
101

)(
101
33

)
=
(

2
101

)(
2
33

)
=
(

2
3333

)
= −1.

Note that we took a shortcut in going from 101 and 33 to 3333; it will not always
be the case that we can combine “denominators.”

Remark 4.6. Unlike the Legendre symbol, the Jacobi symbol does not strictly
correspond to quadratic residues. On one hand, it is easy to check that if gcd(a, n) = 1
and a is a quadratic residue modulo n, then

(
a
n

)
= 1. But on the other hand, there

are examples such as
( 2

15
)

= 1 where 2 is a quadratic nonresidue modulo 15.

5. Concluding remarks

The proof of quadratic reciprocity begs the question of how to generalize to higher
orders. For the simplest example, we can look at cubic reciprocity. The proper setting
in which we can apply the Gauss sum for cubic residues is no longer the integers,
but rather the Eisenstein integers Z[ζ3]. This ring is a unique factorization domain,
which allows us to discuss primes and factorization. A number-theoretical argument
similar to that in the integers allows us to state that for any α relatively prime to
a prime π in Z[ζ3], there exists a third root of unity ωα such that α

N(π)−1
3 ≡ ωα

(mod π), where N(a+ bζ3) = a2 − ab+ b2 is the Eisenstein norm.

Definition 5.1. The cubic residue character
( ·
π

)
3 : Z[ζ3]/(π)→ C is defined

to be (α
π

)
3

:=

ωα if α 6= 0;

0 if α = 0.

The statement of cubic reciprocity requires some additional distinction among
primes.

Definition 5.2. We say that a prime π ∈ Z[ζ3] is primary if π ≡ 2 (mod 3).
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Theorem 5.3 (Cubic reciprocity). If π1 and π2 are distinct primary primes relatively
prime to 3, then (

π1

π2

)
3

=
(
π2

π1

)
3
.

Much of the work done to apply Gauss sums and Jacobi sums to quadratic
reciprocity is useful in the proof of cubic reciprocity. Only a little more computation
is needed outside of what we have already presented. Recall that our proofs of
quadratic reciprocity relied heavily on the computation of the square of the quadratic
Gauss sum. Cubic reciprocity relies on computing the cube of the cubic Gauss sum,
which is defined analogously to the quadratic Gauss sum but for the cubic residue
character. For a complete discussion, see Chapter 7 of [Lem00].

We can go further and generalize to even higher orders. The celebrated Eisenstein
reciprocity theorem is a direct generalization of cubic reciprocity and once again
relies on the computation of the m-th power of the m-th power Gauss sum. This
computation is known as the Stickelberger relation. More about these higher order
reciprocity laws can be found in Chapter 14 of [IR90].

The importance of reciprocity laws, beginning with quadratic reciprocity and
going even beyond Eisenstein reciprocity, cannot be overstated. They provide
important information about the structure of the ring of integers in cyclotomic fields
and contribute heavily to the field of algebraic number theory. Central to these
theorems is the Gauss sum defined and interpreted through the lens of the discrete
Fourier transform, as we have demonstrated. Though the scope of reciprocity laws
extend far beyond elementary number theory, we can gain a glimpse into this vast
world with the study of quadratic reciprocity.
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