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1. INTRODUCTION

In this paper, we will discuss the analogue of the Laplacian for the finite upper
half plane and provide an explicit form for its eigenfunctions, which is something that
is not possible for the real upper half plane case. As we will see, the Laplacian on the
finite upper half plane is motivated from the combinatorial Laplacian (] ,
p. 51]) and is equal to A, — (¢+1)I for A, the adjacency operator of an appropriately
defined Cayley graph with degree ¢ + 1 (we are working in the field F,). We then

—1
define the k—Bessel functi by k ) = I —_— — h
efine the essel functions by k(z|x, ) uezF X [ m (eru)} (—u) where

X, ¢ are multiplicative (for IF;) and additive (for IF;) characters respectively. We
show that the k—Bessel functions are indeed eigenfunctions of the Laplacian and
that they transform under horizontal translations of the input according to the
additive character of the translation. In Section 2, we present a summary of the
real and finite upper half planes as well as fractional linear transformations and
some elementary results. In section 3, we build on the discussion of finite upper half
planes to define the family of graphs X, (9, a) which we in fact show to be Cayley
graphs with a suitable generating set S;(d, a). We then use these graphs to define
Laplacians on the finite upper half plane. In Section 4, we first discuss the finite
power function which is an eigenfunction of the Laplacian on the finite upper half
plane and then discuss the k-Bessel functions, which are a family of eigenfunctions
of the Laplacian with nice properties under horizontal translations of the input.
The k—Bessel functions are tremendously useful in constructing the discrete series
representation of GL(2,F,), which we will not discuss in this paper (we refer the
reader to | , p- 34-40] and | , p- 370-374]

for a discussion of the Discrete Series).

2. UPPER HALF PLANES AND FRACTIONAL LINEAR TRANSFORMATIONS

In this section, we discuss some prelimiaries, including the real upper half plane
H and the finite upper half plane H,. We define the notion of distance on the
Laplacian on H and the notion of distance on H,. We also discuss fractional linear
transformations and the fact that they are isometries. We will use these facts in
later sections to further explore H,, specifically a discrete analog of the Laplacian

for H, and its eigenfunctions.
2.1. Real Poincaré Upper Half Plane. The Poincaré upper half plane is

H={z=z+iyecC|y>0}
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with noneuclidean arc element ds? = y~2(dx? + dy?) and corresponding Laplacian

0%u  0%u
du=i? (5 + 5

Recall the action of elements SL(2,R) acting on z € H is given by the fractional

az+b
cz+d"

preserve both ds and A (a proof of conservation of distances is given in Theorem
2.1) .

linear/Mobius transformation: if g = (‘; Z) , then gz = Mobius transforms

2.2. Finite Upper Half Plane. We model the finite upper half plane on the real
one from above. Let F; be a finite field of odd characteristic p, where ¢ = p” and

let 0 € F; be nonsquare. Then the finite upper half plane is
Hy={z=2+yVé|z,ycFyy+#0}

We can view the finite upper half plane as a subset of the quadratic field extension
F,(V/$) of F,. We note that H, is not strictly a half plane (as we exclude the real
axis) but is useful as a parallel to H.

Mobius transformations apply to elements of H, as well, with g = (g g) and z € H,

giving gz = ‘clzzj_s Notation: If z = 2 4+ yv/d € H,, we writez =Re 2z, y =Im 2,

24 =z =x —yV/6. The norm of z is Nz = zZ and the trace is z + z. We will often
refer to v/3 as the origin.

2.3. Finite Noneuclidean Geometry. We need a notion of distance to obtain a
finite analog of noneuclidean geometry (from Section 2.1) on the finite upper half

plane. We define a distance (not a metric) between two points in Hy:

NiE—w) (z—u)?—dy—v)’

d(z,w) =
(z,w) Im z Im w YU

where z = z + y\/g ,w = u + vV/3, with z,y,u,v € Fg,yv # 0. We note that

d(z,w) € Fy, so there is certainly no possibility of a triangle inequality and hence this

can’t be a metric. However, by taking § = —1, we can recover ds? = y~2(dz? + dy?),

the hyperbolic distance for H, making d(z,w) a natural extension.

We have the following important result:

Theorem 2.1. d(z,w) = d(gz, gw) for all g € GL(2,F,) (or SL(2,R)), and for all
z,w e Hy (or H).

Proof. We provide the proof for ¢ € GL(2,F,) and z,w € Hg; the other proof for
SL(2,R) and H is the exact same, by taking § = —1.

Let z = 2+yV0 ,w = u+vV/9. Consider a general element g = (‘; fl) of GL(2,Fy).
It is well known that Mobius transformations can be thought of as compositions
of three elementary transformations: f(z) = z+0, f(z) = az, f(z) = 1/z. We can
easily see from the definition that d(z,w) = d(z + b, w + b) and d(z,w) = d(az, aw).
We now show d(z,w) = d(1/z,1/w). We have
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(w—2)  u?— 6w+ 22— 5y? — 2ux + 20y
(wz N (u? — 6v?) (22 — 0y?)
2

and

Im1 Iml—Imx_y\/gImu_v\/g = L
zw a2 —8y? w2 — 002 (u? — v2) (22 — 6y?)
and hence d(z,w) = d(1/z,1/w).
Thus, for a general Mobius transformation on the finite (or real) upper half plane,
we have d(z,w) = d(gz, gw) as we can compose the elementary transformations and

use the fact that each of these preserves distances. O

3. THE GRAPHS X,(0,a) AND THEIR PROPERTIES

In this section, we will define a family of graphs X,(6,a) on H, and prove that
these graphs can be thought of as Cayley graphs with the set of generators S, (4, a)
which are the "circles" of radius a around the origin in H,. We then use these
graphs to motivate a "discretization" of the Laplacian on H for the H, case using

the combinatorial Laplacian for X, (4, a).
3.1. Defining the graphs X, (9, a).

Definition 1. For a € Hy, the graph X,(0,a) has vertices given by the elements of

H, and z,w € Hy connected by an edge when d(z,w) = a.

Example 3.1. Consider the graph X3(—1,1). We can take § = —1 because —1 = 2
(mod 3) is not a square in F3. We write ¢ = v/—1 in Fg. We begin by identifying
the neighbors of ¢ in the graph. We want z = x + iy such that

N(z—1i) 2+ (@y-—1)?2

d(z,1) = =
(2,1) ; y

1

which gives points £1 4 ¢ as the neighbors of i. To get the neighbors (distance 1
away) of z = x + 4y, we apply the matrix (§ 7 ) to £1 £ (this follows from Theorem

2.1). In doing so, we have obtained a 4-regular graph.

3.2. Properties of X (9, a).
Theorem 3.2. X,(4,a) is a (g + 1)-regular graph if a # 0 or 4.

Proof. Tt suffices to show that there are ¢+ 1 points adjacent to the origin v/5. This
is because we can denote a general element z 4 yv/d of H, as (4 7)+/d. Along with
Theorem 2.1, this will allow us to conclude the result.

We thus look for z = z+y+/d such that N(z—+/3) = ay, that is, 2> = ay+d(y—1)2.

Noting that zZ = 27 and that Im z = 2=2 = 2=2°

55 = av5 o Wecan also write the condition as

(z = V&) = a(2V0) (2 — 29)
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which is a degree ¢+ 1 polynomial over Fq(\/g) and hence has at most ¢+ 1 solutions
in ]Fq(\ﬁ). Note that that if any solution had y = 0, this would imply z? = §,
contradicting the nonsquare nature of §. Thus, all solutions will lie in H,.

Some computation shows that the desired condition is equivalent to N(z+c¢) = r,
where ¢ = (a/20 — 1)v/d and r = a(1 — a/46) and we are thus solving wit! = r
where w = z + ¢. We wish to show that this equation has exactly ¢ + 1 solutions.
We note that for r # 0, that is for a # 0,46, we can solve N(z + ¢) = r as the norm
is simply a homomorphism from ]P‘q(\/g)* to Fy. We know that the multiplicative
group IFq(\/S)* is cyclic with some generator, say 7. As N(z) = 297! the kernel
of the norm will have ¢ + 1 elements given of the form +* where (¢ + 1)k = 0
(mod ¢? —1). Thus, ¢ — 1 must divide k, and we have k = (¢ —1)j for j = 0,1, ..., q.
The image of the norm map thus has (¢* —1)/(q + 1) = ¢ — 1 = [F}| elements, and
thus w9 = r has ¢ + 1 solutions w given any r # 0 in F,. This implies that the
origin has ¢ + 1 neighbors and by extension, that X,(d, a) is (¢ + 1)-regular. O

In fact, we have a stronger result. We can show that X,(d, a) can be thought of

as a Cayley graph, with an explicit formula for the generating set.

Theorem 3.3. X,(6,a) is connected for a # 0,46. In fact, it is a Cayley graph for

the affine group
y x
Aff(q) =
w-{(s7)

using the generators

oo )

We accept the above theorem without proof and refer the reader to | ,
p. 319-321] for a proof.

17nyan2’¢0}

xvyEFQ7y7é07x2 :ay+6(y_1)2}

We note that z2 = ay + §(y — 1)? is equivalent to d(z + yv/9, /) = a, and thus
Sq(d,a) corresponds to "circles" around the origin. It can also be seen that S, (4, a)

contains (¢ + 1) elements, thereby verifying Theorem 3.2.

We now define an analogue of the Laplacian discussed for H in the case of H,.
This is not immediately obvious, as H, consists of discrete points. We turn to the
combinatorial Laplacian A = A — 27 for the circle graph X (Z/nZ,{£1}) in the
context of the Laplacian of the real line for motivation. As described above, the
Sq(0,a) are "circles" around the origin, the analogue of our circle graphs in the
1—dimensional case. We thus consider the combinatorial Laplacians for the Cayley
graphs X,(4,a) given by A, = A, — (¢ + 1)I, where A, is the adjacency operator
for X,(0,a), and ¢ + 1 is the degree of X,(d, a).

4. THE k-BESSEL FUNCTIONS AND ELEMENTARY PROPERTIES

In this section, we will study eigenfunctions of the Laplacian on H,. First, we
note that eigenfunctions of the Laplacians A, and of the adjacency operators A,
of X,(0,a) are the same. This follows from the definition of A, above. It thus
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suffices to study the eigenfunctions of the operators A,. We first look at the finite
power function, which we show to be an eigenfunction of A,. We then look at the
k—Bessel functions which are a generalization of the finite power function and show
that they are a family of eigenfunctions of A, that possess the additional property
of transforming by an additive character of I, under horizontal translations of the
input. We then conclude by showing that the k—Bessel functions are orthogonal in
L?(H,), whenever their additive characters differ. For a more detailed discussion of

orthogonality, we direct the reader to [ , D- 33-50].

Definition 2. The finite power function p,(z) for z € Hy and x a character of Fy
is given by py(z) = x(Im 2).
We now show that the finite power function is an eigenfunction of A,.

Theorem 4.1. Let A be the adjacency operator of X4(6,a). The finite power function
is an eigenfunction of A, that is Ap, = R,py where Ry = Zwesq(&a) x(Im w).

y z\ (v u
(362
€54(6,a)

=x(¥) Y. x() =Rypy(2).

(6 1)€SaG0) (6 1)esa@a)

Proof. We have

O

Building upon the power functions previously discussed, we now turn to the
k—Bessel functions, a family of eigenfunctions of the adjacency operators A, of
X4(6,a). More specifically, k—Bessel functions are eigenfunctions of A, that behave
well under transformations by the abelian subgroup N of GL(2,F,) defined by
N ={({%) |z €F,}. Note N is isomorphic to the additive group of F, and that

transformations by NV are effectively horizontal translations of the input.

Definition 3. A k—Bessel function f : Hy — C is an eigenfunction of all adjacency
operators A, of X4(0,a) such that f(z) transforms by N according to the nontrivial
additive character ¢(x) of Fy:

A (f) = Af, foralla €F,

flz+u) =v(u)f(z), for all z € Hy,u € Fy

We will usually assume t(z) = exp(2niTr(z)/p) where Tr(z) is the trace of

x € Fy, down to F), given by = + 2P + a? + ..+ 2P (remember ¢ = p").

Given that a k—Bessel function must satisfy a lot of constraints, how do we know

that they exist? We provide a construction of one class of k—Bessel functions below:

We define the k—Bessel function k(z|x, ¢) for z € H,, x a multiplicative character

and v the above-mentioned additive character of IFy, by

kel w) = ) x [Im (zfu)] W(—u).

u€l,
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We first note that if y is the trivial character, we have k(z[1,¢) = 3, cp, ¥(—u) =
0 (by exploiting symmetry and noting that the p'" roots of unity sum to 0) and
thus we ignore this case.

We now prove some elementary properties of k(z|x, %) and that it actually is a

valid form of the desired eigenfunction.

Theorem 4.2. Let z =z + y\/o. Then

k(zlx, 1) = x()v (@) > x(u® = 0y2)(—u).

u€l,

Proof. This is a simple result that will help us later show that the k—Bessel function

as defined is an eigenfunction of the adjacency operator. Writing v = x — u, we have

X)) Y x(W? = 5y?)p(—u) = x(y) Y x(u? = dy?)¢(x — u)

u€l, u€l,

We can write the LHS as

%X{ (z+u>}¢< >=Z [m(z‘_lv)}w(v)
- T (=)o - (Mzé_(;yz)w(w.

velF,

It thus suffices to show that

== = (s )

As y is a multiplicative character and a? = 1 for all a € F,, we have x(a) = x(a™!)

which gives the result. U

As a brief aside, we will now define the Gauss sum and prove an important
property of it which will aid us in proving the non-degeneracy of the k—Bessel

functions.

Definition 4. Given a multiplicative character x of Fy and an additive character

Y of By, their Gauss sum T'(x, ) is Z x(2)¥(z).

z€F,

Theorem 4.3. [I'(x,v)| = \/q provided neither x nor 1 are trivial.

Proof. The proof of this fact is not particularly interesting or relevant to our main
result in this section, so we direct the reader to [ , p- 142-147]. O

We now show that the k—Bessel functions are eigenfunctions of the adjacency
operators A, of X4(9,a).
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Theorem 4.4. Let f(z) = k(z|x, ). Then f(2) is an eigenfunction of the adjacency
operator A for X4(9, a) with the same eigenvalue as that for the finite power function,
that is, R, from Theorem 4.1. In particular, f(z) is not identically zero, if X is a

nontrivial multiplicative character.

Proof. We recall that Af(gv/d) = Z f(gsV/d). Also note that x(Im( =) =
s€Sq(d,a)
Dy (((1) _01) (3 %)z) where the second equality follows from Theorem 4.1. Thus,

Ak<z|x,w>—ZApx{<f 01> (; ?>z}w<—u>
u€l,

0 -1 1 u
=Ry u%;qpx { (1 0 ) (0 1) Z} Y(—u) = Ryk(z|x, ¥).

We now need to show that k(z|x,®) is nonzero for nontrivial multiplicative

character x. We multiply both sides of the expression from Theorem 4.2 by x(y)(x)

and sum over elements y € F as follows:

> xW)(@)k(x +yVolx, v)

yeF;
= Y x@=&A(—u) (X(w)x(y) = ¢la)d(e) = 1)
yEF;,uEFq
= Z X(Nw)(=Tr(w)/2)  (write w = v + yVd)
weH,

-1 — =
= (o N, ¥ 0 5Tr) = T,(%.9).

For the third equality, note that H, is effectively a subset of the field extension
F,(V/8) with the elements = + 0v/3 excluded; I'j2 sums over F,(v/§) and —T', term
subtracts off the contribution from terms of the form w = z 4+ 0/ and noting that
X(Nw) = x(w?) = (x(w))?, $(~Tr(w)/2) = ¥(—w) = B(w) for such w.

By Theorem 4.3, we have |I';(x, )| = |/q assuming neither x, 1) are trivial. Thus

the difference I'j2 —I'y is nonvanishing, and k(z|x, ¢) is nonzero for nontrivial x. O

We now show the second property of the k—Bessel function, namely that k(z|x, ©)
transforms by N (as defined at the beginning of this section) according to the

nontrivial additive character ¥ (x).
Theorem 4.5. For every u € Fy,z € Hy, we have k(z + u|x,¥) = v(u)k(z|x, )

Proof. From Theorem 4.2, we have
k(2 8) = x()(@) Y x(0? = 5y2)e(—v)
v€ER,

where z = z + yv/6. Thus,

k(2 +ulx, ¥) = x()d(z +u) > X (0% = 6y)ip(—v)

velF,

= x()(@)P(w) Y x(©0? = 5y?)ib(—v) = G(u)k(z + ulx, ¥).

velF,
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O

We now conclude with the orthogonality of the k—Bessel functions when the

additive characters differ.

Theorem 4.6. The k— Bessel functions k(z|x,®) and k(z|x,v') are orthogonal
(with respect to the standard inner product on L*(H,) if 1,4 are distinct.

Proof. Recall the standard inner product for functions f,g on L?(H,) is given

by Z f(z . We first note that for z = = + V9, we can write k(z|x, ) =
z€H,

Y(2)k(yV/d|x, %) due to Theorem 4.2. The desired inner product is thus

7 k(e wk(he ) = | Y w@ @) | | ] kyVelx, v)kyvalx, ¢')

z€H, z€F, yEF *

The first term is 0 for ¢ # 1’ by the orthogonality relations on the additive group
Fy, which gives the result. O
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