

MATH 251: TOPOLOGY II
SPRING 2026 PRACTICE PROBLEMS

CONTENTS

0. Review of Topology I	2
Exam 1 Topics	4
1. Fundamental Groups and Covering Spaces	5
2. Separation Theorems in the Plane	5
Exam 2 Topics	6
3. Simplicial Complexes and Surfaces	6
Exam 3 Topics	7
4. Homology	8

NOTE: All citations are to Munkres's textbook, *Topology*, 2nd Edition. When a problem statement has a proof in Munkres, try your best to find your own proof, before comparing with his.

0. REVIEW OF TOPOLOGY I

Problem 1. Show that no two of the spaces

$$(0, 1), \quad (0, 1], \quad [0, 1]$$

are homeomorphic. *Hint:* What happens if you remove any point from $(0, 1)$?

Problem 2. Suppose that $A \subseteq X$. Recall that the *interior* of A in X is

$$\text{Int}_X(A) := \{x \in X \mid x \in U \text{ for some } U \text{ open in } X \text{ such that } U \subseteq A\}$$

and the *closure* of A in X is

$$\text{Cl}_X(A) := \{x \in X \mid x \in K \text{ for all } K \text{ closed in } X \text{ such that } K \supseteq A\}.$$

Show the identity $\text{Cl}_X(A) = X \setminus \text{Int}_X(X \setminus A)$.

Problem 3. Suppose that $A \subseteq Y \subseteq X$, where Y is a subspace of X .

- (1) Show that $\text{Int}_Y(A) \supseteq \text{Int}_X(A)$.
- (2) Give an example where $\text{Int}_Y(A) \neq \text{Int}_X(A)$. *Hint:* You can assume $Y = A$.

Problem 4. Let X be the real line \mathbf{R} in its finite complement, or *cofinite*, topology. Show that every sequence of points in X converges to every point of X simultaneously. Deduce that X is not Hausdorff.

Problem 5. Show that any metric space is Hausdorff.

Problem 6. Show that for any integer $n \geq 1$, the analytic topology on \mathbf{R}^n matches the product topology on $\mathbf{R} \times \cdots \times \mathbf{R}$, where there are n factors.

Problem 7. Let $p: \mathbf{R} \rightarrow S^1$ be the map

$$p(t) = (\cos(2\pi t), \sin(2\pi t)).$$

For any $a, b \in \mathbf{R}$, we define the *(open) arc* $J_{a,b} \subseteq S^1$ to be

$$J_{a,b} = \{p(t) \mid a < t < b\}.$$

Show that the collection of arcs $\{J_{a,b} \mid a, b \in \mathbf{R}\}$ satisfies the definition of a basis (Munkres page 78).

Problem 8. Show that the following topologies on S^1 are all the same:

- The topology generated by the basis $\{J_{a,b} \mid a, b \in \mathbf{R}\}$ in Problem 7.
- The subspace topology that S^1 inherits from its inclusion into \mathbf{R}^2 .
- The quotient topology that S^1 inherits from the surjective map $p: \mathbf{R} \rightarrow S^1$.

Problem 9. Let $f_1, f_2, f_3: A \rightarrow X$ be continuous maps. Suppose that φ is a homotopy from f_1 to f_2 and ψ is a homotopy from f_2 to f_3 . Construct a homotopy from f_1 to f_3 explicitly in terms of φ and ψ .

Problem 10. In the setup of Problem 9, suppose that

$$\begin{aligned} A &= [0, 1], \\ f_1(0) &= f_2(0) = f_3(0), \\ f_1(1) &= f_2(1) = f_3(1). \end{aligned}$$

Show that in this case, if φ and ψ are path homotopies, then we can choose the solution of (1) to be a path homotopy as well.

Problem 11. Let $f, g: X \rightarrow Y$ and $F, G: Y \rightarrow Z$ be continuous. Show that

$$\text{if } f \sim g \text{ and } F \sim G, \text{ then } F \circ f \sim G \circ g.$$

Problem 12. Use the $f = g$ case of Problem 11 to show: If X, Y are nonempty and Y is contractible, then any continuous map from X into Y is nulhomotopic: that is, homotopic to a constant map.

Problem 13. Give an explicit homotopy equivalence between S^1 and $\mathbf{R}^2 \setminus \{(0, 0)\}$, and show that it is indeed a homotopy equivalence.

Problem 14. Suppose that:

- $f: X \rightarrow Y$ and $g: Y \rightarrow X$ define a homotopy equivalence between X and Y .
- $j: Y \rightarrow Z$ and $k: Z \rightarrow Y$ define a homotopy equivalence between Y and Z .

Show that $j \circ f: X \rightarrow Z$ and $g \circ k: Z \rightarrow X$ define a homotopy equivalence between X and Z .

Hint: Among other things, you will need to show that $g \circ k \circ j \circ f \sim \text{id}_X$. But we are given that $k \circ j \sim \text{id}_Y$. Use Problem 11 to show that $k \circ j \sim \text{id}_Y$ implies $g \circ k \circ j \circ f \sim \text{id}_X$.

Problem 15. Show that if the identity map of a space X is homotopic to a constant map with value $c \in X$, then X is homotopy equivalent to $\{c\}$. Deduce that all contractible spaces are homotopy equivalent to each other.

Problem 16. A subset $A \subseteq \mathbf{R}^n$ is star convex if and only if there is some point $c \in A$ such that the line segment between c and any other point of A is contained within A . That is, for any $a \in A$ and $t \in [0, 1]$, we have $(1 - t)c + ta \in A$.

- (1) Show that if A is star convex, then A is contractible.
- (2) Show that if A is star convex, then any loop in A based at a_0 is path homotopic to the constant loop.
- (3) Give a star convex subset of \mathbf{R}^2 that is not convex.

EXAM 1 TOPICS

Exam 1 will be a closed-book exam. It will be held in-class, 12:40–2:00 pm, on ~~January 26~~ February 2.

You should know by heart the definitions of the following terms. You should be able to state multiple examples of each (with justification), and in some cases, non-examples.

- Munkres §13. Bases
- §18. Continuous maps
- §15. The product topology (only on finite direct products)
- §16. Subspaces
- §22. Quotient spaces
- §17. Interiors and closures
- §23–24. Separations, connectedness
- §23. Paths, path-connectedness
- §26–27 Compactness
- §51. Homotopies, path homotopies
- §58. Homotopy equivalences

1. FUNDAMENTAL GROUPS AND COVERING SPACES
2. SEPARATION THEOREMS IN THE PLANE

EXAM 2 TOPICS

3. SIMPLICIAL COMPLEXES AND SURFACES

EXAM 3 TOPICS

4. HOMOLOGY