MATH 250: TOPOLOGY I PROBLEM SET #6

FALL 2025

Due Wednesday, November 26. Please attempt all of the problems. <u>Six</u> of them will be graded. You may consult books, papers, and websites as long as you cite all sources and write up your solutions in your own words.

Problem 1. Let X be any space, $x \in X$ any point, and $\gamma : [0,1] \to X$ any path in X starting at x. Recall that the *reverse* path $\bar{\gamma}$ is given by $\bar{\gamma}(s) = \gamma(1-s)$. Give an explicit path homotopy from the constant path e_x to $\gamma * \bar{\gamma}$.

(The fact that e_x is path-homotopic to $\gamma * \bar{\gamma}$ is part of Munkres Theorem 51.2, but his proof is indirect.)

Hint: Build a path homotopy h such that, for any t, the path h(-,t) runs from x to $\gamma(t)$, then runs backward to x.

Problem 2. Show that if X is path-connected and simply-connected, then for any two points $x, y \in X$, there is a unique path-homotopy class of paths from x to y. Hint: Given paths γ_0, γ_1 from x to y, consider $\gamma_0 * \bar{\gamma}_1 * \gamma_1$.

Problem 3. By considering what happens when a point is removed, show that:

- (1) \mathbf{R}^1 and \mathbf{R}^n are not homeomorphic if n > 1.
- (2) \mathbb{R}^2 and \mathbb{R}^n are not homeomorphic if n > 2.

Hint: Use different topological invariants in (1) and (2).

Problem 4. For each of the following spaces, the fundamental group is either trivial, \mathbf{Z} , or $\mathbf{Z} * \mathbf{Z}$. Determine, for each space, which option is the case. You do not need to give explicit homeomorphisms or homotopy equivalences, but give informal descriptions (or pictures) to support your reasoning.

- (1) The solid torus $D^2 \times S^1$, where $D^2 = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 \le 1\}$.
- (2) The hollow torus $S^1 \times S^1$.
- (3) The punctured hollow torus $S^1 \times S^1 \{p\}$, where p is any point.
- (4) The cylinder $S^1 \times [0,1]$.
- (5) The infinite cylinder $S^1 \times \mathbf{R}$.
- (6) \mathbb{R}^3 with the nonnegative portions of the x, y, and z-axes deleted.

Problem 5. Suppose that $X = U \cap V$, where U, V are open, path-connected, and intersect in a nonempty, path-connected subspace A. Give examples where:

- (1) X, U, V are simply-connected, but A is not.
- (2) X and U are simply-connected, but V is not.
- (3) X is simply-connected, but U and V are not.
- (4) A is simply-connected, but X, U, V are not.

Problem 6. Suppose that $X = X_1 \cup X_2$, where X_1, X_2 are closed, path-connected, and intersect in a single point p. (Recall that this is an example of a wedge sum.) Suppose that for i = 1, 2, the subspace X_i contains an open neighborhood of p, say W_i , such that $\{p\}$ is a deformation retract of W_i . Use Seifert-Van Kampen to show that in this situation,

$$\pi_1(X, p) \simeq \pi_1(X_1, p) * \pi_1(X_2, p),$$

as stated in class.

Hint: Set $U_1 = X_1 \cup W_2$ and $U_2 = X_2 \cup W_1$. Check that X_i is homotopy equivalent to U_i for i = 1, 2, and that $\{p\}$ is homotopy equivalent to $U_1 \cap U_2$. Then check the hypotheses needed for Seifert-Van Kampen. You may assume without proof that path-connectedness is preserved by homotopy equivalence.

Problem 7 (Munkres 341, #3). Let $p: E \to B$ be a covering map. Show that if B is connected and $p^{-1}(b_0)$ has k elements for some $b_0 \in B$, then $p^{-1}(b)$ has k elements for all $b \in B$. In this case, we say that p is a k-fold covering.

Problem 8. Draw every possible 2-fold covering space of the figure-eight $S^1 \vee S^1$ up to homeomorphism. You do not need to prove that your list is exhaustive.

(Note that $S^1 \vee S^1$ has a symmetry of order two. If two covering spaces differ by a lift of this symmetry, you do not need to draw both.)

Problem 9 (Munkres 348, #4). Let $\mathbf{R}_+ \subset \mathbf{R}$ be the subset of positive numbers, and let $\mathbf{0} = (0,0) \in \mathbf{R}^2$. Let $p : \mathbf{R} \times \mathbf{R}_+ \to \mathbf{R}^2 - \{\mathbf{0}\}$ be defined by

$$p(u,r) = (r\cos(2\pi u), r\sin(2\pi u)).$$

This is a covering map. Find liftings along p of the following paths in $\mathbb{R}^2 - \{0\}$:

$$f(t) = (2 - t, 0),$$

$$g(t) = ((1 + t)\cos(2\pi t), (1 + t)\sin(2\pi t)),$$

$$h = f * g.$$

Sketch (the images of) these paths and their liftings.

Problem 10. Let $p: \mathbf{R} \to S^1$ be defined by

$$p(t) = (\cos(2\pi u), \sin(2\pi u)).$$

Consider the path in $S^1 \times S^1$ given by

$$f(t) = ((\cos(2\pi t), \sin(2\pi t)), (\cos(4\pi t), \sin(4\pi t))).$$

Find an explicit lifting \tilde{f} of f along $(p,p): \mathbf{R} \times \mathbf{R} \to S^1 \times S^1$, and sketch it.