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1. Wednesday, 9/3

1.1. Here I try to dispel some potential confusion about bases.
Let X be any set. Let B be any collection of subsets of X. A useful general

observation:

Lemma 1.1. For any subset Y ⊆ X, the following conditions are equivalent:
(1) Y is the union of some elements of B.
(2) For any x ∈ Y , there is some B ∈ B such that x ∈ B ⊆ Y .

Now let T be the collection of all subsets of X that can be written as unions of
elements of B. Using the lemma, we see that

T =
{

subsets U ⊆ X

∣∣∣∣∣ for any x ∈ U , we have some B ∈ B
such that x ∈ B ⊆ U

}
.

Theorem 1.2. Suppose that B satisfies the following conditions:
(I) Every point of X belongs to some element of B.

(II) For any B, B′ ∈ B and any point x of the intersection B ∩ B′, we can find
some B′′ ∈ B such that x ∈ B′′ ⊆ B ∩ B′.

Then T is a topology on X.

We proved this theorem at the start of the course, implicitly using Lemma 1.1.
The only hard part is checking that finite intersections of elements of T are still
elements of T . To make this easier, I mentioned that it suffices by induction to check
intersections between pairs of elements of T .

Any collection B that satisfies hypotheses (I)–(II) in the theorem above is called
a basis. In the situation of the theorem, we say that B generates or induces the
topology T , and that B is a basis for T specifically.

1.2. Separately, if we are given T to start, then there is a way to check whether a
subcollection C ⊆ T is a basis that generates T . In Munkres, this is Lemma 13.2.

Theorem 1.3. Fix a topology T on X and a subset C ⊆ T . Suppose that for each
x ∈ X and U ∈ T , there is some C ∈ C such that x ∈ C ⊆ C. Then C is a basis, and
moreover, the topology it generates is T .
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2. Monday, 9/8

2.1. Let X be a set, and let d : X × X → [0, ∞) be a metric on X. For all x ∈ X

and δ > 0, we define the d-ball with center x and radius δ to be

Bd(x, δ) = {y ∈ X | d(x, y) < δ}.

Below is a cleaner version of a long proof from lecture.

Theorem 2.1. The set {Bd(x, δ) | x ∈ X and δ > 0} forms a basis.

Proof. Let B denote the set in question. We must check two axioms:
(I) Any point of X is contained in some element of B.

(II) Given any two elements of B and a point in their intersection, we can find
some other element of B containing that point and contained within the
intersection as a subset.

(I) holds because for any x ∈ X, we have x ∈ B(x, δ) for any choice of δ.
To show (II): Pick balls Bd(x, δ) and Bd(x′, δ′) and a point z in their intersection

Bd(x, δ) ∩ Bd(x′, δ′). We must exhibit some d-ball that contains z and is contained
within the intersection as a subset.

It suffices to find some ϵ > 0 such that

Bd(z, ϵ) ⊆ Bd(x, δ) ∩ Bd(x′, δ′).

Explicitly, this condition on ϵ means that

if y ∈ X satisfies d(z, y) < ϵ, then d(x, y) < δ and d(x′, y) < δ′.

(Informally, this means that if y is close enough to z, then it is close enough to x and
x′ as well.) By drawing a picture of the situation, we get the idea that we need to
use the triangle inequality to bound the distance d(x, y) in terms of the distances
d(x, z) and d(z, y).

Since z ∈ Bd(x, δ) ∩ Bd(x′, δ′), we know that d(x, z) < δ and d(x′, z) < δ′. Let
α = δ−d(x, z) and α′ = δ′−d(x′, z), the respective distances from z to the boundaries
of the balls Bd(x, δ) and Bd(x′, δ′). Now observe that if y ∈ X satisfies d(z, y) < α,
then y also satisfies

d(x, y) ≤ d(x, z) + d(z, y) by the triangle inequality

< d(x, z) + α by the hypothesis on y

= δ.

An analogous argument shows that if y satisfies d(z, y) < α′, then d(x′, y) < δ′.
So let ϵ = min(α, α′). We see that if y ∈ X satisfies d(z, y) < ϵ, then we have both

d(x, y) < δ and d(x′, y) < δ′. So we have found the desired ϵ. □
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3. Problem Set 2, #9

Problem. Let X be arbitrary, and let d : X × X → [0, ∞) be an arbitrary metric.
Assume that the function e : X × X → [0, ∞) defined by

e(x, y) = d(x, y)
1 + d(x, y) .

is a bounded metric. Show that d and e induce the same topology on X.

Solution. Let Td and Te denote the topologies respectively induced by d and e.
We first show that Td is finer than Te, meaning Te ⊆ Td. Since elements of Te are

unions of e-balls, it is suffices to check that any e-ball is an element of Td. So fix an
e-ball Be(x, δ). It suffices to show that for y ∈ Be(x, δ), we can find some ϵ > 0 such
that Bd(y, ϵ) ⊆ Be(x, δ).

As a warmup, ignore d: Can we find some ϵ > 0 such that Be(y, ϵ) ⊆ Be(x, δ)?
Explicitly, for any y satisfying e(x, y) < δ, we have to exhibit some ϵ > 0 such that, if
z satisfies e(y, z) < ϵ, then z also satisfies e(x, z) < δ. The argument will be similar
to the latter half of the proof of Theorem 2.1. Namely, let ϵ = δ − e(x, y) > 0, the
distance from y to the boundary of the ball Be(x, δ). If z satisfies e(y, z) < ϵ, then
by the triangle inequality, it satisfies

e(x, z) ≤ e(x, y) + e(y, z) < e(x, y) + ϵ = δ,

as needed. So this choice of ϵ does give Be(y, ϵ) ⊆ Be(x, δ).
Now go back to the original problem involving d. By combining Be(y, ϵ) ⊆ Be(x, δ)

with the following observation, we get Bd(y, ϵ) ⊆ Be(x, δ), as needed.

Lemma 3.1. For any y ∈ X and ϵ > 0, we have Bd(y, ϵ) ⊆ Be(y, ϵ).

Proof. Left as an exercise. □

Now we show the reverse inclusion: Td ⊆ Te. So fix a d-ball Bd(x, δ). We must
show that for any y ∈ Bd(x, δ), we can find some ϵ > 0 such that Be(x, ϵ) ⊆ Bd(x, δ).
Explicitly, for any y satisfying d(x, y) < δ, we have to exhibit some ϵ > 0 such that,
if z satisfies e(y, z) < ϵ, then z also satisfies d(x, z) < δ.

Since the roles of d and e in Lemma 3.1 cannot be switched, we cannot just
replicate our earlier argument with d and e switched. But we still expect to use the
triangle inequality that d(x, z) ≤ d(x, y) + d(y, z). Letting α = δ − d(x, y) > 0 gives
us d(x, y) + α = δ. So we just need to exhibit ϵ > 0 such that e(y, z) < ϵ implies
d(y, z) < α, because for such ϵ,

e(y, z) < ϵ will imply d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + α = δ,

as needed.
Rearranging the identity e(y, z) = d(y,z)

1+d(y,z) gives d(y, z) = e(y,z)
1−e(y,z) . Moreover,

rearranging e(y, z) < ϵ gives e(y,z)
1−e(y,z) < ϵ

1−ϵ . So the following lemma finishes the
argument:
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Lemma 3.2. For any α > 0, there is some ϵ > 0 such that ϵ
1−ϵ < α. (Moreover, we

can pick ϵ < 1, so that ϵ
1−ϵ is well-defined.)

Proof. Left as an exercise. Hint: If 0 < ϵ < 1
2 , then 1

1−ϵ < 2. □

Since we have shown that Td and Te contain each other, they coincide. That is, d

and e induce the same topology. □
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4. Problem Set 4, #8, (3)–(4)

Problem. We say that a nonempty space X is contractible if and only if its identity
map is nulhomotopic: i.e., homotopic to some constant-valued map.

Suppose that X, Y are nonempty spaces. Let [X, Y ] be the set of continuous maps
from X into Y modulo homotopy. Show that:

(1) If Y is contractible, then [X, Y ] is a singleton.
(2) If X is contractible and Y is path-connected, then [X, Y ] is a singleton.

Solution to (1). Since Y is contractible and nonempty, we can find some point y0 ∈ Y

and some homotopy from the identity map on Y to the constant map on Y with
value y0: that is, from idY to the map cy0 : Y → Y defined by cy0(y) = y0.

Using this homotopy, we will show that any continuous map f : : X → Y is
homotopic to the constant map on X with value y0.

A special case of Problem Set 5, #1 is the following fact: For any spaces X, Y, Z

and continuous maps f : X → Y and g, g′ : Y → Z, if g ∼ g′, then g ◦ f ∼ g′ ◦ f .
Applying this to our setup, we deduce that

idY ◦ f ∼ cy0 ◦ f.

Observe that idY ◦ f = f , while cy0 ◦ f is the constant map on X with value y0. We
have therefore shown that every continuous map from X into Y is homotopic to the
latter map. □

Solution to (2). Since X is contractible and nonempty, we can find some point x0 ∈ Y

and some homotopy from the identity map idX to the constant map cx0 : X → X

defined by cx0(x) = x0.
Pick a continuous map f : X → Y . Another special case of Problem Set 5, #1 is

the following fact: For any spaces X, Y, Z and continuous maps f, f ′ : X → Y and
g : Y → Z, if f ∼ f ′, then g ◦ f ∼ g ◦ f ′. We deduce that

f ◦ idX ∼ f ◦ cx0 .

Observe that f ◦ idX = f , while f ◦ cx0 is the constant map cf(x0) : X → Y defined
by cf(x0)(x) = f(x0).

Now imagine we have another continuous map f ′ : X → Y . We want to show that
f ∼ f ′. By our preceding work,

f ∼ cf(x0) and f ′ ∼ cf ′(x0).

Since Y is path-connected, we can choose a path γ : [0, 1] → Y from f(x0) to f ′(x0).
Now observe that h : X × [0, 1] → Y defined by h(x, t) = γ(t) for all x ∈ X and
t ∈ [0, 1] is a homotopy from cf(x0) to cf ′(x0). □
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