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1. WEDNESDAY, 9/3

1.1. Here I try to dispel some potential confusion about bases.
Let X be any set. Let B be any collection of subsets of X. A useful general
observation:

Lemma 1.1. For any subset Y C X, the following conditions are equivalent:

(1) Y is the union of some elements of B.
(2) For any x € Y, there is some B € B such that x € BCY.

Now let T be the collection of all subsets of X that can be written as unions of

elements of B. Using the lemma, we see that

T = {subsets UCX

for any x € U, we have some B € B
such that z € B C U '

Theorem 1.2. Suppose that B satisfies the following conditions:

(I) Every point of X belongs to some element of B.
(IT) For any B, B’ € B and any point x of the intersection B N B’, we can find
some B" € B such that x € B" C BN B'.

Then T is a topology on X.

We proved this theorem at the start of the course, implicitly using Lemma 1.1.
The only hard part is checking that finite intersections of elements of 7 are still
elements of 7. To make this easier, I mentioned that it suffices by induction to check
intersections between pairs of elements of 7.

Any collection B that satisfies hypotheses (I)—(II) in the theorem above is called
a basis. In the situation of the theorem, we say that B generates or induces the
topology T, and that B is a basis for T specifically.

1.2. Separately, if we are given T to start, then there is a way to check whether a
subcollection C C T is a basis that generates 7. In Munkres, this is Lemma 13.2.

Theorem 1.3. Fix a topology T on X and a subset C C T . Suppose that for each
xe€X and U € T, there is some C € C such that x € C CC. Then C is a basis, and

moreover, the topology it generates is T .
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2. MonDAY, 9/8

2.1. Let X be a set, and let d: X x X — [0,00) be a metric on X. For all x € X
and § > 0, we define the d-ball with center x and radius § to be

Bd(xv(s) = {y eX | d(w,y) < 5}
Below is a cleaner version of a long proof from lecture.

Theorem 2.1. The set {By(x,0) | x € X and § > 0} forms a basis.

Proof. Let B denote the set in question. We must check two axioms:
(I) Any point of X is contained in some element of B.

(IT) Given any two elements of B and a point in their intersection, we can find
some other element of B containing that point and contained within the
intersection as a subset.

(I) holds because for any = € X, we have € B(x, ) for any choice of 4.

To show (II): Pick balls By(z,d) and Bg(2’,d’) and a point z in their intersection
Bg(z,6) N Bg(a',d"). We must exhibit some d-ball that contains z and is contained
within the intersection as a subset.

It suffices to find some € > 0 such that

Bd(za 6) - Bd(x7 5) N Bd(xla 5/)
Explicitly, this condition on ¢ means that
if y € X satisfies d(z,y) <e¢, then d(z,y) < and d(2',y) < §'.

(Informally, this means that if y is close enough to z, then it is close enough to = and
2’ as well.) By drawing a picture of the situation, we get the idea that we need to
use the triangle inequality to bound the distance d(x,y) in terms of the distances
d(z,z) and d(z,y).

Since z € By(x,0) N By(2',0"), we know that d(z,2) < ¢ and d(a',2) < ¢'. Let
a=0d—d(x,z)and o = § —d(a’, z), the respective distances from z to the boundaries
of the balls By(z, ) and By(z',d"). Now observe that if y € X satisfies d(z,y) < a,

then y also satisfies

d(z,y) < d(z,z) +d(z,9) by the triangle inequality
d(z,z) + « by the hypothesis on y

An analogous argument shows that if y satisfies d(z,y) < o/, then d(z/,y) < ¢'.
So let € = min(«, o). We see that if y € X satisfies d(z,y) < €, then we have both
d(z,y) < 6 and d(2',y) < ¢'. So we have found the desired e. O
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3. PROBLEM SET 2, #9

Problem. Let X be arbitrary, and let d : X x X — [0,00) be an arbitrary metric.
Assume that the function e : X x X — [0, 00) defined by

d(z,y)

e(@,y) = 1+d(x,y)

is a bounded metric. Show that d and e induce the same topology on X.

Solution. Let Ty and T, denote the topologies respectively induced by d and e.

We first show that 7y is finer than 7., meaning 7. C 7. Since elements of 7. are
unions of e-balls, it is suffices to check that any e-ball is an element of Ty. So fix an
e-ball B.(z,9). It suffices to show that for y € B.(x,d), we can find some € > 0 such
that By(y,€) C Be(x,0).

As a warmup, ignore d: Can we find some € > 0 such that B.(y,e) C Be(x,0)?
Explicitly, for any y satisfying e(z,y) < 0, we have to exhibit some € > 0 such that, if
z satisfies e(y, z) < ¢, then z also satisfies e(x, z) < 0. The argument will be similar
to the latter half of the proof of Theorem 2.1. Namely, let € = § — e(x,y) > 0, the
distance from y to the boundary of the ball B(z,0). If z satisfies e(y, z) < €, then
by the triangle inequality, it satisfies

e(z,z) <e(z,y)+ely,z) <e(zr,y) +€=79,

as needed. So this choice of € does give B.(y,€) C Be(z,0).
Now go back to the original problem involving d. By combining Be(y, €) C Be(z, )
with the following observation, we get By(y,€) C Be(x,d), as needed.

Lemma 3.1. For any y € X and € > 0, we have Bi(y,€) C Be(y,¢€).

Proof. Left as an exercise. O

Now we show the reverse inclusion: 7; C 7.. So fix a d-ball By(z,d). We must
show that for any y € By(x,d), we can find some € > 0 such that B.(x,€) C By(x,0).
Explicitly, for any y satisfying d(x,y) < §, we have to exhibit some ¢ > 0 such that,
if z satisfies e(y, z) < ¢, then z also satisfies d(z, z) < 0.

Since the roles of d and e in Lemma 3.1 cannot be switched, we cannot just
replicate our earlier argument with d and e switched. But we still expect to use the
triangle inequality that d(z, z) < d(z,y) + d(y, z). Letting a = 6 — d(x,y) > 0 gives
us d(z,y) +a = §. So we just need to exhibit € > 0 such that e(y,z) < e implies
d(y, z) < a, because for such e,

e(y,z) <e willimply d(z,z) <d(z,y)+d(y,z) <d(z,y) +a =0,

as needed.

d(y,z)

Rearranging the identity e(y,z) = Trd(s2) gives d(y,z) = e(y,2)

1—e y)z) ’

Moreover,

rearranging e(y,z) < € gives 13(3(;)@ < 5. So the following lemma finishes the

argument:
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Lemma 3.2. For any a > 0, there is some € > 0 such that = < . (Moreover, we
can pick € < 1, so that 7% is well-defined.)

Proof. Left as an exercise. Hint: If 0 < € < %, then i < 2. O

Since we have shown that 7; and 7, contain each other, they coincide. That is, d

and e induce the same topology. O
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4. PROBLEM SET 4, #8, (3)—(4)

Problem. We say that a nonempty space X is contractible if and only if its identity
map is nulhomotopic: i.e., homotopic to some constant-valued map.

Suppose that X, Y are nonempty spaces. Let [X, Y] be the set of continuous maps
from X into Y modulo homotopy. Show that:

(1) If Y is contractible, then [X,Y] is a singleton.
(2) If X is contractible and Y is path-connected, then [X,Y] is a singleton.

Solution to (1). Since Y is contractible and nonempty, we can find some point yp € Y’
and some homotopy from the identity map on Y to the constant map on Y with
value yo: that is, from idy to the map cy,: Y — Y defined by ¢y, (y) = yo.

Using this homotopy, we will show that any continuous map f: : X — Y is
homotopic to the constant map on X with value yq.

A special case of Problem Set 5, #1 is the following fact: For any spaces X,Y, Z
and continuous maps f: X — Y and g,¢: Y — Z,if g ~ ¢/, then go f ~ ¢ o f.
Applying this to our setup, we deduce that

idy o f ~ ¢y, 0 f.

Observe that idy o f = f, while ¢y, o f is the constant map on X with value yo. We
have therefore shown that every continuous map from X into Y is homotopic to the
latter map. O

Solution to (2). Since X is contractible and nonempty, we can find some point g € Y’
and some homotopy from the identity map idx to the constant map c,: X — X
defined by ¢z, (z) = 0.

Pick a continuous map f: X — Y. Another special case of Problem Set 5, #1 is
the following fact: For any spaces X,Y, Z and continuous maps f, f/: X — Y and
g:Y = Z, if f~ f',then go f ~ go f'. We deduce that

fOidXNfOCmO.

Observe that foidx = f, while f o ¢y, is the constant map cy(,,): X — Y defined

by ¢(ag)(2) = f(0)-
Now imagine we have another continuous map f': X — Y. We want to show that
f ~ f'. By our preceding work,

o) and f iy,

Since Y is path-connected, we can choose a path v : [0,1] — Y from f(z¢) to f'(x0).
Now observe that h : X x [0,1] — Y defined by h(z,t) = 7(t) for all x € X and
t € [0,1] is a homotopy from cg(y) t0 Cpr(z)- d
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