

from \mathbf{H} to \mathcal{U}

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology

G split semisimple group

W Weyl group

 Br_W braid group

V reflection representation of W

Motivations for this talk:

- Invariants of braids and knots/links
- Topology of varieties related to G
- Representations of algebras related to $W \curvearrowright V$

$$\mathbf{A}_W = \mathbf{C}[W] \ltimes \operatorname{Sym}(V)$$

We'll study a monoidal trace

$$extstyle{AH}: \mathbf{H}_W^{op} o \mathbf{Mod}_2(\mathbf{A}_W)$$

and its decategorification

$$[-]_q = \varepsilon \cdot \sum\nolimits_{i,j} {(- 1)^i q^{i + j} (\mathbf{A} \mathbf{H}^{i,j})^\vee} : H_W \to R_W \llbracket q \rrbracket,$$

where:

- \mathbf{H}_W is the Hecke category of W
- $\mathbf{Mod}_2(\mathbf{A}_W)$ is a category of bigraded \mathbf{A}_W -modules
- H_W is the Hecke algebra of W
- R_W is the representation ring of W

1

Thm 1 Khovanov–Rozansky's HHH factors as

$$\mathbf{H}_W \xrightarrow{\mathrm{AH}^{\vee}} \mathbf{Mod}_2(\mathbf{A}_W) \xrightarrow{\mathrm{Hom}_W(\Lambda^*(V), -)} \mathbf{Vect}_3.$$

Thus, AH is related to link invariants when $W = S_n$.

 $\widetilde{\mathcal{U}} \to \mathcal{U}$ the Springer resolution

Thm 2 For a positive braid $\beta \in Br_W^+$,

$$AH^{i,j}(\mathcal{R}(\beta)) = \operatorname{gr}_{j}^{\mathbf{W}} H_{i}^{!,G}(\mathcal{Z}(\beta)),$$

where:

- $\mathcal{R}(\beta) \in \mathbf{H}_W$ is the Rouquier complex of β
- $\mathcal{Z}(\beta) = \widetilde{\mathcal{U}} \times_{\mathcal{U}} \mathcal{U}(\beta)$ is a generalized Steinberg variety

Example A topological braid β has a *link closure* $\hat{\beta}$:

A link has a superpolynomial $\mathbf{P} \in \mathbf{Z}(q^{\pm 1/2})[a^{\pm 1}, t^{\pm 1}].$

If $\beta = (\sigma_1 \sigma_2 \sigma_3)^3 \in Br_4$, then $\hat{\beta}$ is the (3,4) torus knot and

$$\begin{split} \mathbf{P}(\hat{\beta}) &= a^6 q^{-3} (1 + q^2 t^2 + q^3 t^4 + q^4 t^4 + q^6 t^6) \\ &+ a^8 q^{-2} (t^3 + q t^5 + q^2 t^5 + q^3 t^7 + q^4 t^8) \\ &+ a^{10} t^8. \end{split}$$

Thms 1, 2 imply that up to a shift, the red term is

$$\sum_{i,j} q^j t^i \operatorname{gr}_j^{\mathbf{W}} H_i^{!,G}(\mathcal{U}(\beta)).$$

Thm 3 For positive β ,

$$[\beta]_q = \pm \frac{1}{|G(\mathbf{F}_q)|} \sum_{u \in \mathcal{U}(\mathbf{F}_q)} |\mathcal{U}(\beta)_u(\mathbf{F}_q)| [\mathcal{B}_u]_q,$$

where \mathcal{B}_u is the Springer fiber over u and

$$[\mathcal{B}_u]_q = \sum_i q^i \mathcal{H}^{2i}(\mathcal{B}_u),$$

an element of $R_W[q]$.

 $\mathbf{D}_{\nu}^{\mathrm{rat}} \supseteq \mathbf{A}_{W}$ rational DAHA of slope $\nu \in \mathbf{Q}$

Thm 4 For periodic β of "good" slope $\nu > 0$, $[\beta]_q$ is the q-character of an explicit $\mathbf{D}_{\nu}^{\mathrm{rat}}$ -module.

Example Write $Irr(S_4) = \{1, \phi, \psi, \varepsilon \phi, \varepsilon\}$ with $\phi = tr(- | V)$.

If
$$\beta = (\sigma_1 \sigma_2 \sigma_3)^3 \in Br_4$$
, as before, then
$$[\beta]_q = (1 + q^2 + q^3 + q^4 + q^6) \cdot 1 + (q + q^2 + q^3 + q^4 + q^5) \cdot \phi + (q^2 + q^4) \cdot \psi + q^3 \cdot \varepsilon \psi.$$

Thm 3 claims this is a sum of $[\mathcal{B}_u]_q$. Indeed:

$$\begin{split} [\beta]_q &= q^6 \cdot [\mathcal{B}_4]_q + (q^3 + q^4) \cdot [\mathcal{B}_{3,1}]_q + q^2 \cdot [\mathcal{B}_{2,2}]_q \\ &+ 1 \cdot [\mathcal{B}_{2,1,1}]_q + 0 \cdot [\mathcal{B}_{1,1,1,1}]_q. \end{split}$$

Thm 4 claims this is also the *q*-character of a certain $\mathbf{D}_{3/4}^{\mathrm{rat}}$ -module. It's the simple quotient of $\mathrm{Sym}(V)$.

 ${f Thm~1}$ was inspired by Webster–Williamson's geometric model for Khovanov–Rozansky homology.

We expect AH to match the (underived) horizontal trace on \mathbf{H}_W studied by Gorsky–Hogancamp–Wedrich and others.

Thms 2, 3 came from asking how Springer theory interacts with nonabelian Hodge phenomena, which certain stacks $\mathcal{U}(\beta)/G$ and $\mathcal{Z}(\beta)/G$ should exhibit.

Inspired by Yun, Oblomkov–Rasmussen–Shende, Shende–Treumann–Zaslow. . .

Thm 4 came from

Gorsky–Oblomkov–Rasmussen–Shende's conjectures relating ${\bf D}_{\nu}^{\rm rat}$ -modules and KR of torus knots.

To describe AH, we interpret the Hecke category geometrically. Henceforth, subscript 0 means "over \mathbf{F}_q ." No subscript means "over $\bar{\mathbf{F}}_q$."

 G_0 flag variety of (the split form) G_0

By a theorem of Iwahori, the Hecke algebra is

$$H_W \otimes \mathbf{C}(q^{1/2}) \simeq \operatorname{End}_{G(\mathbf{F}_q)}(\mathbf{C}[\mathcal{B}(\mathbf{F}_q)])$$

 $\simeq \mathbf{C}[\mathcal{B}(\mathbf{F}_q) \times \mathcal{B}(\mathbf{F}_q)]^{G(\mathbf{F}_q)}.$

Similarly, the Hecke category is built from

$$D_{G,m}^b(\mathcal{B}_0\times\mathcal{B}_0),$$

the bounded derived category of G_0 -equivariant mixed complexes of sheaves over $\mathcal{B}_0 \times \mathcal{B}_0$ with constructible cohomology.

The G-orbits of $\mathcal{B} \times \mathcal{B}$ are indexed by W:

$$\mathcal{B}_0 \times \mathcal{B}_0 = \coprod_{w \in W} O_{w,0}.$$

Each $O_{w,0}$ defines an intersection complex $IC_{w,0}$.

The Hecke category is $\mathbf{H}_W = K^b(C(\mathcal{B}_0 \times \mathcal{B}_0))$, where

$$C(\mathcal{B}_0 \times \mathcal{B}_0) = \left\langle IC_{w,0} \langle n \rangle : \begin{array}{c} w \in W, \\ n \in \mathbf{Z} \end{array} \right\rangle_{\oplus}$$
$$\subseteq D_{G,m}^b(\mathcal{B}_0 \times \mathcal{B}_0).$$

There is a geometric convolution on $C(\mathcal{B}_0 \times \mathcal{B}_0)$.

The $IC_{w,0}$ decategorify to the Kazhdan–Lusztig basis. The *shift-twist* $\langle 1 \rangle = [1](\frac{1}{2})$ decategorifies to $q^{-1/2}$. Lusztig introduced the diagram below to study unipotent representations of G:

$$\mathcal{B}_0 \times \mathcal{B}_0 \stackrel{act}{\longleftarrow} G_0 \times \mathcal{B}_0 \stackrel{pr}{\longrightarrow} G_0$$

The functor

$$\mathbf{CH} = \bigoplus_{i} {}^{p}\mathcal{H}^{i}[-i] \circ pr_{!} \circ act^{*} : \mathbf{D}^{b}_{G,m}(\mathcal{B}^{2}_{0}) \to \mathbf{D}^{b}_{G,m}(G_{0})$$

descends to a monoidal trace on $\mathbf{H}_W.$

Webster-Williamson showed that

$$\operatorname{gr}_{i+j}^{\mathbf{W}} \operatorname{H}_{G}^{i}(G, \operatorname{CH}(IC_{w})) \simeq \operatorname{HH}^{j}(\operatorname{H}_{G}^{i+j}(\mathcal{B} \times \mathcal{B}, IC_{w})).$$

 HH^* is Hochschild homology over $\mathrm{H}_G^*(\mathcal{B}) \simeq \mathrm{Sym}(V)$.

So, Khovanov-Rozansky's HHH factors as

$$\mathbf{H}_W = \mathrm{K}^b(\mathrm{C}(\mathcal{B}_0 \times \mathcal{B}_0)) \xrightarrow{\mathrm{CH}} \mathrm{K}^b(\mathrm{C}(G_0)) \xrightarrow{\mathrm{gr}_*^\mathbf{W} \ \mathrm{H}_G^*} \mathbf{Vect}_3$$

where

$$C(G_0) = \left\langle E_0 \text{ is a subquotient} \atop E_0 \text{ is of } CH(IC_{w,0})\langle n \rangle \atop \text{ for some } w, n \right\rangle_{\oplus} \subseteq D_{G,m}^b(G_0).$$

But the objects of the $K^b(C(-))$ are not directly related to the topology of actual varieties, in general.

We need a realization functor

$$\rho: \mathrm{K}^b(\mathrm{C}(-)) \to \mathrm{D}^b_{G,m}(-)$$

to relate them to actual geometric objects.

A sufficient condition for ρ to exist is:

$$i \text{ nonzero} \implies \operatorname{gr}_0^{\mathbf{W}} \operatorname{Ext}^i(K, L) = 0$$

for all $K_0, L_0 \in \mathcal{C}(-)$.

This fails for $C(G_0)$. But by work of Lusztig and Rider–Russell, it holds for

$$C(\mathcal{U}_0) = \langle \iota^* E_0 : E_0 \in C(G_0) \rangle_{\oplus} \subseteq D^b_{G,m}(\mathcal{U}_0),$$

where $\iota: \mathcal{U}_0 \to G_0$ is the inclusion. Thus a diagram:

$$\begin{array}{ccc}
\mathbf{K}^{b}(\mathbf{C}(\mathcal{B}_{0}^{2})) & \xrightarrow{\mathbf{CH}} & \mathbf{K}^{b}(\mathbf{C}(G_{0})) & \xrightarrow{\iota^{*}} & \mathbf{K}^{b}(\mathbf{C}(\mathcal{U}_{0})) \\
& & \downarrow & & \downarrow & \\
\rho & & \downarrow & & \downarrow & \\
& \downarrow & \downarrow &$$

$$\mathrm{D}_{G,m}^b(\mathcal{B}_0^2) \stackrel{\mathrm{CH}}{\longrightarrow} \mathrm{D}_{G,m}^b(G_0) \stackrel{\iota^*}{\longrightarrow} \mathrm{D}_{G,m}^b(\mathcal{U}_0)$$

There are special objects in $C(G_0)$ and $C(\mathcal{U}_0)$:

- $\mathcal{G}_0 \in C(G_0)$, the Grothendieck–Springer sheaf
- $S_0 \in C(\mathcal{U}_0)$, the Springer sheaf

By a theorem of Lusztig, $\mathbf{A}_W \simeq \operatorname{Ext}^*(\mathcal{S}, \mathcal{S})$.

Our functor AH is the composition

$$\mathbf{H}_{W}^{op} = \mathbf{K}^{b}(\mathbf{C}(\mathcal{B}_{0}^{2}))^{op} \to \mathbf{D}_{G,m}^{b}(\mathcal{U}_{0})^{op}$$

$$\xrightarrow{\mathbf{gr}_{*}^{\mathbf{W}} \mathbf{Ext}^{*}(-,\mathcal{S})} \mathbf{Mod}_{2}(\mathbf{A}_{W}).$$

Use the top half of the diagram to show ${\bf Thm}~{\bf 1}$:

$$\operatorname{Hom}_W(\Lambda^*(V), \operatorname{AH}^{\vee}) \simeq \operatorname{HHH}.$$

Key step is $\bigoplus_i \operatorname{gr}_i^{\mathbf{W}} \operatorname{Ext}^i(\mathcal{G}, \mathcal{G}) \simeq \operatorname{Ext}^*(\mathcal{S}, \mathcal{S})$.

Thm 2: For positive β ,

$$\operatorname{AH}(\mathcal{R}(\beta)) \simeq \operatorname{gr}^{\mathbf{W}}_* \operatorname{H}^{!,G}_*(\mathcal{Z}(\beta)).$$

We need to define $\mathcal{R}(\beta)$ and $\mathcal{Z}(\beta)$.

Broué-Michel and Deligne introduced a map

$$O: Br_W^+ \to \left\{ \begin{array}{c} G_0\text{-varieties over } \mathcal{B}_0 \times \mathcal{B}_0 \\ \text{up to strict isomorphism} \end{array} \right\}$$

such that $O(\alpha\beta)_0 \simeq O(\alpha)_0 \times_{\mathcal{B}_0} O(\beta)_0$.

The complex $\mathcal{R}(\beta) \in \mathbf{H}_W$ is characterized by

$$\rho(\mathcal{R}(\beta)) = (O(\beta)_0 \to \mathcal{B}_0 \times \mathcal{B}_0)_! \mathbf{C}.$$

The variety $\mathcal{Z}(\beta)_0$ is a certain pullback of $O(\beta)_0$.

7

We define $\mathcal{U}(\beta)_0$ and $\mathcal{Z}(\beta)_0$ by cartesian squares:

In particular, $\widetilde{\mathcal{U}}_0 = \mathcal{U}(\mathbf{1})_0$ for the identity braid $\mathbf{1}.$

$$\mathbf{A}_W \curvearrowright \mathrm{AH}(\mathcal{R}(\beta)) \text{ from } \mathrm{H}^{!,G}_*(\mathcal{Z}(\mathbf{1})) \curvearrowright \mathrm{H}^{!,G}_*(\mathcal{Z}(\beta)).$$

Cor Up to (pure) shifts,

- The bottom a-degree of HHH matches $\operatorname{gr}^{\mathbf{W}}_* \operatorname{H}^{!,G}_*(\mathcal{U}(\beta)).$
- The top a-degree of HHH matches $\operatorname{gr}^{\mathbf{W}}_* \operatorname{H}^{!,G}_*(\mathcal{X}(\beta))$, where

$$\mathcal{X}(\beta)_0 = \mathcal{U}(\beta)_0 \times_{\mathcal{U}_0} \{1\}.$$

The full twist is a central element $\pi = \sigma_{w_0}^2 \in Br_W^+$:

Gorsky–Hogancamp–Mellit–Nakagane proved bottom a-degree of HHH(β) \simeq top a-degree of HHH($\beta\pi$), refining a theorem of Kálmán.

Cor For positive β ,

$$\operatorname{gr}^{\mathbf{W}}_{*} \operatorname{H}^{!,G}_{*}(\mathcal{U}(\beta)) \simeq \operatorname{gr}^{\mathbf{W}}_{*} \operatorname{H}^{!,G}_{*}(\mathcal{X}(\beta\pi)).$$

What is a geometric explanation for this isomorphism? It's *not* induced by a homemorphism of stacks, in general. Thm 3 is a decategorified analogue of Thm 2:

$$[\boldsymbol{\beta}]_q = \pm \frac{1}{|G(\mathbf{F}_q)|} \sum_{u \in \mathcal{U}(\mathbf{F}_q)} |\mathcal{U}(\boldsymbol{\beta})_u(\mathbf{F}_q)| [\mathcal{B}_u]_q,$$

where $[\mathcal{B}_u]_q = \sum_i q^i H^{2i}(\mathcal{B}_u)$. However, it is *not* just a corollary.

The virtual weight series of [X/G] need not be the quotient of the virtual weight polynomial of X by that of G.

Instead, the proof uses a strange formula

$$[\beta]_q = q^{|\beta|/2} \varepsilon \cdot \sum_i q^i \operatorname{Sym}^i(V) \cdot \sum_{\phi, \psi \in \operatorname{Irr}(W)} \{\phi, \psi\} \phi_q(\beta) \psi,$$

where $\{-,-\}: \operatorname{Irr}(W)^2 \to \mathbf{Q}$ is Lusztig's "exotic Fourier transform."

Cor For parabolic $W' \subseteq W$, we have a commutative diagram

$$H_{W'} \xrightarrow{[-]_q} R_{W'}[\![q]\!]$$

$$\downarrow \qquad \qquad \downarrow^{(1-q)^{-d} \operatorname{Ind}_{W'}^W},$$

$$H_W \xrightarrow{[-]_q} R_W[\![q]\!]$$

where $\mathbf{d} = \operatorname{rk}(W) - \operatorname{rk}(W')$.

This is a kind of Markov property for $[-]_q$. The proof uses an induction formula for the $[\mathcal{B}_u]_q$.

Cor If $\beta \mapsto \mathbf{w}$ under $Br_W^+ \to W$, then

$$[\beta]_q \in \frac{1}{(1-q)^{\dim(V^{\underline{w}})}} R_W[q].$$

The proof uses a result of Lusztig on the sizes of G-stabilizers.

Example Writing r = rk(W), we compute

$$[\mathbf{1}]_q = \frac{1}{(1-q)^r} \operatorname{Ind}_{\{1\}}^W([\mathbf{1}]_q) = \frac{1}{(1-q)^r} \mathbf{C}[W].$$

For $W = S_n$, recovers:

$$\mathbf{P}(n\text{-unlink})_{t=-1} = \left(\frac{a - a^{-1}}{q^{1/2} - q^{-1/2}}\right)^{n-1}.$$

Example Let

$$W = S_3 = \langle s, t : s^2 = t^2 = (sts)^2 = 1 \rangle.$$

Writing $Irr(S_3) = \{1, \phi, \varepsilon\}$, we compute

$$[\sigma_w]_q = \begin{cases} (1-q)^{-2}(1+2\phi+\varepsilon) & w=1\\ (1-q)^{-1}(1+\phi) & w \in \{s,t\}\\ 1 & w \in \{st,ts\}\\ (1-q)^{-1}(1-q+q^2+q\phi) & w=sts \end{cases}$$

A braid β is periodic of slope $\frac{m}{n} \in \mathbf{Q}$ iff: $\beta^n = \pi^m$.

Using the "exotic" formula, we can show:

Lem If β is periodic of slope $\nu \in \mathbf{Q}$, then

$$[\beta]_q = \sum_{\phi \in \operatorname{Irr}(W)} q^{\nu_{\mathbf{C}}(\phi)} \operatorname{Deg}_{\phi}(e^{2\pi i \nu}) \phi \cdot \sum_i q^i \operatorname{Sym}^i(V),$$

where:

- $\operatorname{Deg}_{\phi}(q) \in \mathbf{Q}[q]$ is the degree of the unipotent principal series of $G(\mathbf{F}_q)$ attached to ϕ .
- $c(\phi)$ is the *content* of ϕ . For $W = S_n$, it's the content of the corresponding partition.

The key is that the traces $\phi_q(\beta)$ are computable.

This goes back to Jones's formula for HOMFLY of torus knots.

The rational DAHA is a deformation of $\mathbf{C}[W] \ltimes \mathcal{D}(V)$, where $\mathcal{D}(V)$ is the Weyl algebra of V:

$$\mathbf{D}_{\nu}^{\mathrm{rat}} = \frac{\mathbf{C}[W] \ltimes (\mathbf{C}[V] \otimes \mathbf{C}[V^{\vee}])}{[x, y] - \langle x, y \rangle - \nu \sum_{\alpha \in \Phi^{+}} \langle x, \alpha^{\vee} \rangle \langle \alpha, y \rangle s_{\alpha}}.$$

It enjoys a well-behaved "category O" of modules where:

- Simple modules $L_{\nu}(\phi)$ are indexed by $\phi \in Irr(W)$.
- Each module M admits a W-stable grading, giving us [M]_q ∈ R_W(q^{1/2}).

There is a Knizhnik-Zamolodchikov functor

$$\mathbf{Mod}(\mathbf{D}_{\nu}^{\mathrm{rat}}) \to \mathbf{Mod}(H_W|_{q^{1/2} = e^{\pi i \nu}}),$$

hinting that the lemma is related to $\mathbf{D}_{\nu}^{\mathrm{rat}}$.

Each simple $L_{\nu}(\phi)$ is the quotient of a Verma $\Delta_{\nu}(\phi)$. If β is periodic of slope ν , then

$$[\beta]_q = (q^{1/2})^{\nu|\Phi|-r} \cdot \sum_{\phi \in \operatorname{Irr}(W)} \operatorname{Deg}(e^{2\pi i \nu}) [\Delta_{\nu}(\phi)]_q.$$

Let n be the denominator of $\nu \in \mathbf{Q}$ in lowest terms.

• If n is *elliptic*, then $[\beta]_q \in R_W[q]$ by our earlier result. This implies Varagnolo–Vasserot's result

$$n \text{ elliptic} \implies \dim L_{\nu}(1) < \infty.$$

• Thm 4. For W irreducible and n cuspidal,

$$[\beta]_q = \begin{cases} [L_{\nu}(1)] + [L_{\nu}(V)] & (W, n) = (E_8, 15), (H_4, 15) \\ [L_{\nu}(1)] & \text{else} \end{cases}$$

The proof uses the KZ functor and the block theory of H_W .

Does this character come from $\mathbf{D}_{\nu}^{\mathrm{rat}} \curvearrowright \mathrm{H}_{*}^{!,G}(\mathcal{Z}(\beta))$?

More complicated:

- $\mathbf{A}_W = \mathbf{A}_{W,\mathbf{0}}$, where $\mathbf{A}_{W,\mathbf{v}} = \mathrm{H}^{!,G \times \mathbf{G}_m}_*(\mathcal{Z}(\mathbf{1}))$.
- $\mathbf{D}_{\nu}^{\mathrm{rat}} = \mathbf{D}_{\nu,1}^{\mathrm{rat}}$ for some $\mathbf{D}_{\nu,\infty}^{\mathrm{rat}}$.

Conj There is a flat $\mathbf{C}[\varpi]$ -deformation

$$AH_{\varpi}(\mathcal{R}(\beta)) \rightsquigarrow AH(\mathcal{R}(\beta))$$
$$\mathbf{A}_{W,\varpi} \curvearrowright AH_{\varpi}(\mathcal{R}(\beta)) \rightsquigarrow \mathbf{A}_{W} \curvearrowright AH_{0}(\beta)$$

such that:

- The A_{W,∞}-action is weight-filtered and degenerates to a weight-graded A_W-action on AH_∞(R(β)).
- In the regular elliptic case, the latter extends to a $\mathbf{D}_{12}^{\mathrm{reg}}$ -action.

arXiv:2106.07444

Thank you for listening.