

Affine Springer Fibers and Level-Rank Duality

Minh-Tâm Quang Trinh

Yale University

- 1 Springer Theory
- 2 Deligne–Lusztig Theory
- 3 Level-Rank Duality

Mainly about joint work with Ting Xue:

arXiv:2311.17106

See also the extended abstract on my website, which we have submitted to FPSAC '25.

- 1 Springer Theory Work over C.
 - ${\bf G} \quad {\rm connected \ reductive \ group}$
 - ${\bf A} \quad {\rm maximal \ torus}$
 - W Weyl group

The *rational Cherednik algebra* D_c^{rat} is a deformation of $\mathbf{C}W \ltimes \mathcal{D}(\mathbf{a})$ depending on a parameter $c \in \mathbf{C}$.

$$egin{array}{lll} D_c^{
m rat} & {
m U}{f g} \ {f C}[{f a}]\otimes {f C}W\otimes {f C}[{f a}^*] & {
m U}{f n}_-\otimes {f U}{f a}\otimes {
m U}{f n}_+ \ \Delta_c(\chi) & \Delta(\lambda) \ L_c(\chi) & L(\lambda) \end{array}$$

For c rational, $D_c^{\rm rat}$ can fail to be semisimple. This is the most interesting case.

For c rational and positive, D_c^{rat} -modules from the geometry of affine Springer fibers.

The affine Springer fiber over $\gamma \in \mathbf{g}((z))$ is

 $\mathcal{F}l_{\gamma} = \{g\mathbf{I} \in \mathbf{G}((z))/\mathbf{I} \mid \gamma \in \operatorname{Lie}(g\mathbf{I}g^{-1})\}.$

Note that $\mathbf{G}((z))/\mathbf{I}$ is infinite-dimensional.

We say that γ is *regular semisimple* iff $\mathbf{G}((z))^{\circ}_{\gamma}$ is a maximal torus.

Here $\mathcal{F}l_{\gamma}$ is finite-dimensional!

But it varies wildly over $\mathbf{g}((z))^{rs} \subseteq \mathbf{g}((z))$.

Fix rational $c = \frac{d}{m} > 0$ in lowest terms. Let $\mathbf{C}^{\times} \curvearrowright \mathbf{G}((z))$ according to

$$\boxed{c \cdot g(z) = \operatorname{Ad}(c^{d\rho^{\vee}})g(c^m z).} \quad \left(\rho^{\vee} = \sum_{\alpha} \omega_{\alpha}^{\vee}\right)$$

(Oblomkov-Yun) $\mathcal{F}l_{\gamma}$ is locally constant over

$$\mathbf{g}_{d/m}^{\mathrm{rs}} = \{ \gamma \in \mathbf{g}((z))^{\mathrm{rs}} \mid c \cdot \gamma = c^d \gamma \},\$$

and $\mathbf{C}^{\times} \curvearrowright \mathcal{F}l_{\gamma}$ for such γ . We say that γ is homogeneous of slope $\frac{d}{m}$.

Example Take $\mathbf{G} = \mathbf{SL}_2$ and \mathbf{B} upper-triangular. Then $\begin{pmatrix} 1 \\ & -1 \end{pmatrix}, \begin{pmatrix} & 1 \\ & z \end{pmatrix}, \begin{pmatrix} z \\ & -z \end{pmatrix}$ have slopes $0, \frac{1}{2}, 1$. (Oblomkov–Yun) Take G simply-connected, simple. For $\gamma \in \mathbf{g}_{d/m}^{\mathrm{rs}}$ such that $\mathcal{F}l_{\gamma}$ is proper:

A perverse filtration P_{≤*} on H^{*}_C (*Fl*_γ).
 It arises from a Ngô-type global model.

• An action of $D_{d/m}^{\text{rat}}$ on

 $\mathcal{E}_{\gamma} := \operatorname{gr}^{\mathsf{P}}_{*} \operatorname{H}^{*}_{\mathbf{C}^{\times}} (\mathcal{F}l_{\gamma})^{\pi_{0}(\mathbf{G}_{0,\gamma})}|_{\epsilon \to 1},$

where $\mathbf{G}_0 = (\mathbf{G}((z))^{\mathbf{C}^{\times}})^{\circ}$ and $\epsilon \in \mathrm{H}^2_{\mathbf{C}^{\times}}(point).$

As a module, \mathcal{E}_{γ} contains $L_{d/m}(\chi_{\text{triv}})$. Equality holds when m is the Coxeter number. **Problem** Give a formula for $D_{d/m}^{\text{rat}} \curvearrowright \mathcal{E}_{\gamma}$ in general. In practice, too hard. Replace with

$$\underline{E}_{\gamma} := \sum_{i} (-1)^{i} \operatorname{gr}_{*}^{\mathsf{P}} \operatorname{H}_{\mathbf{C}^{\times}}^{i} (\mathcal{F}l_{\gamma})^{\pi_{0}(\mathbf{G}_{0,\gamma})}|_{\epsilon \to 1}.$$

Idea $D_{d/m}^{\mathrm{rat}}$ commutes with monodromy of \mathcal{E}_{γ} over

$$\mathbf{c}_{d/m}^{\mathrm{rs}} \subseteq \mathbf{g}_{d/m}^{\mathrm{rs}}$$

a Kostant-type transverse slice to $\mathbf{G}_0 \curvearrowright \mathbf{g}_{d/m}^{\mathrm{rs}}$.

The monodromy seems to factor through an algebra from *Deligne-Lusztig theory*.

Deligne–Lusztig studied groups over *finite fields*. But up to Tate twist,

$$\operatorname{Gal}(\bar{\mathbf{F}}_q | \mathbf{F}_q) \simeq \hat{\mathbf{Z}} \simeq \operatorname{Gal}(\overline{\mathbf{C}((z))} | \mathbf{C}((z))).$$

(Outer) forms of **G** are classified by Dynkin automorphisms in the same way over \mathbf{F}_q as over $\mathbf{C}((z))$.

Much of Oblomkov–Yun's setup generalizes from **G** to any of its forms $\mathbf{G}_{\mathbf{C}((z))}$.

The tori $\mathbf{A}, \mathbf{G}_{\gamma}$ generalize to forms $\mathbf{A}_{\mathbf{C}((z))}, \mathbf{G}_{\mathbf{C}((z)),\gamma}$. These have corresponding forms $\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q}$. 2 Deligne-Lusztig Theory Work over $\overline{\mathbf{F}}_q$ for good q. {forms of \mathbf{G} over \mathbf{F}_q } \leftrightarrow {Frobenii $F \curvearrowright \mathbf{G}$ } We say that $G = \mathbf{G}^F$ is a finite group of Lie type. F-stable Levis $\mathbf{L} \subseteq \mathbf{G}$ correspond to Levis $L \subseteq G$.

Deligne–Lusztig introduced varieties[†] $Y_{\rm L}^{\rm G}$ such that

$$G \curvearrowright \operatorname{H}^*_c(Y^{\mathbf{G}}_{\mathbf{L}}) \curvearrowleft L.$$

Induction map R_L^G : $K_0(L) \to K_0(G)$:

$$R_L^G(\boldsymbol{\lambda}) = \sum\nolimits_i {(-1)^i {\rm H}_c^i(Y_{\mathbf{L}}^{\mathbf{G}})[\boldsymbol{\lambda}]}.$$

[†] Actually, $Y_{\mathbf{L}}^{\mathbf{G}}$ depends on a parabolic $\mathbf{P} \supseteq \mathbf{L}$.

(Broué–Malle) For *m*-regular maximal tori **T**, a specific algebra $\frac{H_T^G(\mathbf{q})}{T}$ such that

$$H_T^G(\boldsymbol{\zeta_m}) = \bar{\mathbf{Q}} W_T^G$$
, where $W_T^G = N_G(T)/T$.

They conjecture:

- 1 $H_T^G(q) \otimes \bar{\mathbf{Q}}_\ell \simeq \operatorname{End}_G(\operatorname{H}^*_c(Y^{\mathbf{G}}_{\mathbf{T}})[1_T]).$
- 2 As a virtual $(G, H_T^G(q))$ -bimodule,

$$R_T^G(1_T) = \sum_{\substack{\rho \in \operatorname{Irr}(G)\\(\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T,\rho}(\rho \otimes \chi_{T,\rho,q})$$

where $\varepsilon_{T,\rho} \in \{\pm 1\}$ and $\chi_{T,\rho} \in \operatorname{Irr}(W_T^G)$. (And $\chi_{T,\rho,q} \in \operatorname{K}_0(H_T^G(q))$ corresponds to $\chi_{T,\rho}$.) Back to Springer. $(\mathbf{A}_{\mathbf{F}_q}, \mathbf{T}_{\mathbf{F}_q} \leftrightarrow \mathbf{A}_{\mathbf{C}((z))}, \mathbf{G}_{\mathbf{C}((z)), \gamma})$

It turns out that **A** and **T** are 1- and *m*-regular. Moreover, $\pi_1(\mathbf{c}_{d/m}^{rs})$ is the braid group of W_T^G .

Conjecture (T–Xue)

- 1 $\pi_1(\mathbf{c}_{d/m}^{\mathrm{rs}}) \curvearrowright \mathcal{E}_{\gamma}$ factors through $H_T^G(1)$.
- 2 As a virtual $(D_{d/m}^{\text{rat}}, H_T^G(1))$ -bimodule,[†]

$$E_{\gamma} = \sum_{\substack{\rho \in \operatorname{Irr}(G) \\ (\rho, R_A^G(1_A)) \neq 0 \\ (\rho, R_T^G(1_T)) \neq 0}} \varepsilon_{T\rho}(\Delta_{d/m}(\chi_{A,\rho}) \otimes \chi_{T,\rho,1}).$$

[†] In general, $D_{d/m}^{\text{rat}}$ is defined using W_A^G .

Theorem (T-Xue) True in these cases:

- *m* is the (twisted) Coxeter number of $\mathbf{G}_{\mathbf{C}((z))}$.
- $(\mathbf{G}_{\mathbf{C}((z))}, m) = ({}^{2}A_{2}, 2), (C_{2}, 2), (G_{2}, 3), (G_{2}, 2).$

Under a conjecture of OY, true in further cases.

Example Take $\mathbf{G}_{\mathbf{C}((z))}$ split, m its Coxeter number. $\chi_{A,\rho}$ runs over characters $\chi_{\wedge k}(\mathbf{a})$ of W_A^G . $\chi_{T,\rho}$ runs over all characters of $W_T^G = \mathbf{Z}/m\mathbf{Z}$. In $\mathrm{K}_0(D_{d/m}^{\mathrm{rat}})$,

$$\begin{split} [E_{\gamma}] &= \sum_{k} (-1)^{k} [\Delta_{d/m}(\chi_{\wedge^{k}(\mathbf{a})})] \\ &= [L_{d/m}(\chi_{\mathsf{triv}})]. \end{split}$$

Cf. the BGG resolution of Berest–Etingof–Ginzburg.

3 Level-Rank Duality Compare E_{γ} given by

$$\sum_{
ho} arepsilon_{T,
ho} (\Delta_{d/m}(\chi_{A,
ho}) \otimes \chi_{T,
ho,1})$$

with $R_A^G(1_A) \otimes_{\bar{\mathbf{Q}}_{\ell}G} R_T^G(1_T)$ given by

$$\sum_{\rho} \varepsilon_{T,\rho}(\chi_{A,\rho,q} \otimes \chi_{T,\rho,q}).$$

 $The\ {\it Knizhnik-Zamolodchik}\ functor$

$$\mathsf{KZ}: \mathsf{Rep}(D_{d/m}^{\mathrm{rat}}) \to \mathsf{Rep}(H_A^G(\zeta_m))$$

sends $\mathsf{KZ}(\Delta_{d/m}(\chi)) = \chi_{\zeta_m}$. Thus an analogy:

$$\mathbf{F}_{q}$$
 : (q,q) :: $\mathbf{C}((z))$: $(\zeta_{m},1)$

The symmetry between A and T led us to new discoveries about the Harish–Chandra theory of G.

Let Uch(G) be the set of *unipotent* irreps of G, which occur in $R_T^G(1_T)$ for some maximal torus **T**.

(Broué–Malle–Michel) Fix a positive integer l.

• $\mathbf{L} \subseteq \mathbf{G}$ is *l-split* iff $\mathbf{L} = Z_{\mathbf{G}}(\mathbf{S})^{\circ}$, where

S is a torus with |S| a power of $\Phi_l(q)$.

• $\lambda \in \text{Uch}(L)$ is *l*-cuspidal iff $(\lambda, R_M^G(\mu)) = 0$ for any *l*-split $M \neq L$.

As we run over pairs (\mathbf{L}, λ) up to conjugacy,

$$\operatorname{Uch}(G) = \coprod \operatorname{Uch}(G)_{\mathbf{L},\lambda},$$

where $\operatorname{Uch}(G)_{\mathbf{L},\lambda} = \{ \rho \mid (\rho, R_L^G(\lambda)) \neq 0 \}.$

For l = 1, these are classical *Harish-Chandra series*.

Generalizing our discussion for maximal tori: Broué–Malle define a Hecke algebra $H^G_{L,\lambda}(q)$ such that

$$H_{L,\lambda}^G(\boldsymbol{\zeta}_l) = \bar{\mathbf{Q}} W_{L,\lambda}^G, \text{ where } W_{L,\lambda}^G = C_{N_G(L)/L}(\lambda).$$

They conjecture:

4

1
$$H_{L,\lambda}^G(q) \otimes \bar{\mathbf{Q}}_{\ell} = \operatorname{End}_G(\operatorname{H}^*_c(Y_{\mathbf{L}}^{\mathbf{G}})[\lambda]).$$

2 As a virtual
$$(G, H_{L,\lambda}^G(q))$$
-bimodule,

$$R_L^G(\lambda) = \sum_{\rho \in \mathrm{Uch}(G)_{\mathbf{L},\lambda}} \varepsilon_{L,\lambda,\rho}(\rho \otimes \chi_{L,\lambda,\rho,q})$$

where $\varepsilon_{L,\lambda,\rho} \in \{\pm 1\}$ and $\chi_{L,\lambda,\rho} \in \operatorname{Irr}(W_{L,\lambda}^G)$.

Via the decomposition map

 $\chi \mapsto \chi_{\zeta_m} : \operatorname{Irr}(W_{L,\lambda}^G) \to \operatorname{K}_0(H_{L,\lambda}^G(\zeta_m)),$

we partition $\operatorname{Irr}(W_{L,\lambda}^G)$ into *blocks*, describing how $H_{L,\lambda}^G(\zeta_m)$ fails to be semisimple.

Conjecture (T-Xue) Fix l, m. Fix an *l*-cuspidal (\mathbf{L}, λ) and *m*-cuspidal (\mathbf{M}, μ).

1 The set

 $\{\chi_{L,\lambda,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\},$ resp. $\{\chi_{M,\mu,\rho} \mid \rho \in \operatorname{Uch}(G)_{\mathbf{L},\lambda} \cap \operatorname{Uch}(G)_{\mathbf{M},\mu}\},$

is a union of $H_{L,\lambda}^G(\zeta_m)$ -, resp. $H_{M,\mu}^G(\zeta_l)$ -blocks.

2 The indexing induces a matching of blocks.

Theorem (T-Xue) (1), (2) are compatible with block sizes for essentially all G, l, m with G exceptional.

Conjecture (T-Xue) In the preceding setup:

3 Via KZ functors, the bijection in (2) lifts to a derived equivalence between category-O blocks of appropriate rational Cherednik algebras.

Theorem (T-Xue) (1), (2), (3) hold for $G = GL_n$ when l, m are coprime.

Note that $W_{L,\lambda}^{\operatorname{GL}_n} \simeq S_N \ltimes \mathbf{Z}_l^N$ for some N, etc. $\operatorname{Rep}(H_{L,\lambda}^{\operatorname{GL}_n}(\zeta_m))$ and $\operatorname{Rep}(H_{M\mu}^{\operatorname{GL}_n}(\zeta_l))$

can be interpreted in terms of *higher-level Fock spaces*

$$\bigoplus_{\substack{\vec{s} \in \mathbf{Z}^l \\ |\vec{s}| = s}} \Lambda_{\mathsf{q}}^{\vec{s}} \xleftarrow{\sim} \Lambda_{\mathsf{q}}^s \xrightarrow{\sim} \bigoplus_{\substack{\vec{r} \in \mathbf{Z}^m \\ |\vec{r}| = s}} \Lambda_{\mathsf{q}}^{\vec{r}}$$

Above, $\Lambda_{\mathbf{q}}^{\vec{s}} \simeq \bigoplus_{N} \mathcal{K}_{0}(S_{N} \ltimes \mathbf{Z}_{l}^{N}) \otimes \mathbf{Q}(\mathbf{q}), \ etc.$

Level-rank duality of Frenkel, Uglov, Chuang–Miyachi, Rouquier–Shan–Varagnolo–Vasserot...

Our conjectures generalize level-rank duality from GL_n to arbitrary G.

Thank you for listening.