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§0 Catalan Numbers

The Catalan numbers generalize in several ways:
rational slopes, Coxeter groups, g-numbers. . .

As we generalize them, we encounter two paradigms
for the collections of objects they enumerate:

nonnesting wversus noncrossing

nonnesting generalize to Weyl groups (Postnikov),
admit Dyck-path-like statistics

noncrossing generalize to Coxeter groups (Reiner,
Bessis), depend on a Coxeter element

The tension between these has interesting incarnations
in algebraic geometry.


https://arxiv.org/abs/2106.07444
https://arxiv.org/abs/2208.00121
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Lastly, a bivariate €4/, (q,t), more difficult to define.

§1 Dyck Paths

€4/n counts the lattice paths above the diagonal in a
d X n rectangle:

il A ddt:

Above are the Dyck paths of slope %

Piontkowski gave a variety stratified by €;/,,-many
affine spaces of various dimensions.

Gorsky—Mazin matched the strata with Dyck paths.
Hikita interpreted €g,,(g,t) in this geometry.

We’ll explain the construction in Lie-theoretic terms.



Let F = C((z)) and O = C[z]. Any v € XY defines an action C* ~ G(F):

v

_ 2y -
Let G = SL,,. The affine Grassmannian of G is cvg(x) =cg(c™z)c™.

Grn = G(F)/G(O). Induces an action C* ~ Gry,.

Generic fixed points are cosets [z¥H] for w € Sy,
It has a Cartan decomposition

Grp = H G(O)zHG(0)/G(0), Also induces an action C* ~ g(F) = s, (F).
nexy G, Lem If v € g(F) is an eigenvector of C*, then
where XY = {u € Z"™ | p1; decreasing and zero-sum}, Gru(v) ={lg) € Grn | g~ 'vg € 8(O)}
h1 is stable under the v-action on Gry,.
=

We'll pick v and v so that v-fixed points of Gry (7y)
correspond to Dyck paths of slope %.



Let {a;}; € &+ C @ be the simple roots.
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where go = Ceq and atop is the highest root.

Lem (Lusztig—Smelt, Sommers) ~, is an
eigenvector of the vg-action on g(F). Moreover,

Grn(va)'® = {[l‘“] €grn

\
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Let § = %(df 1)(n — 1), and let

Jd/n = {A - ZZO

A + dZZO + nZZO g A,
1Z>0\ Al =6 '

Lem Explicit bijection Gry (v4)%d — Ja/n:

[zH] — H (np; +d(i — 1) +nZ>).
7 a; ()

Ex Take % = %.
(a1 (), az2(p), as(p))
( (0,4,8)
20y + oy = (2,-1,-1) (6,1,5)
af + 208 =(1,1,-2) (3,7,2)
20 + 20y = ( (6,4,2)
a}/ +oay =( (3,4,5)



Lem Explicit bijection from Jg/,, to the set of Dyck
paths of slope %

Ex Let min(p) = minj<j<n—1 a;(p).
If = (2,0,—2), then min(p) = 2 and

H (ai(n) — min(p) +3Z>9) = {0,2,3,4,5,...}
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Cor [Grn(va) | = Ca/n-

Lem The strata Gry(vq) = Gry N Grn(vq) are affine
spaces (when nonempty).

Thm (Gorsky—Mazin + Hikita)

Z qéfmin(u)tdim(g'm ()

[##] € Grn (va)"d

€d/n(qv t) =

Both sides specialize to €4/,,(q) when g = t.

Ex €u/3(q,1t) =1+ qt + qt? + ¢*t2 + ¢3¢3.

© 6 —min(u)  dim(Gru(v))
(0,0,0) 3 3
(2,-1,-1) 2 2
(1,1,-2) 1 2
(2,0, -2) 1 1
(1,0,—1) 0 0

o



Now let G be any almost-simple, simply-connected
algebraic group.

We can replace Gry, with Grg, and replace n with the
Coxeter number h of the Weyl group W.

Let dy,...,d, be the invariant degrees and

Cw,a(q) = H W7
1<i<r i

where d(d; — 1) is the remainder of d(d; — 1) mod h.

Set Cyy g = Cwyd(l).

Thm (Oblomkov—Yun) [Grg(vq)"d| = Cyy,qg-

Proof uses a cohomological rational Cherednik algebra.

But Hikita’s combinatorics do not generalize.

Thm (T) For G = Sp,, no “reasonable” analogue of
Hikita’s construction recovers €y, 4(q) from Grg(vq).

Nonetheless, a construction of noncrossing rather than
nonnesting flavor gives:

Thm (T) There is a G-variety U 4 such that

i
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satisfies:
1. G‘g/‘e/?d(q,t) =Cq/n(q, qt?) when G = SL,,.

2. €% (a, 1) = Uc,a(F)l/|G(Fq)| = Cw,a(q).

Above, W is a so-called weight filtration.



§2 Braids

U C G unipotent variety, B flag variety

For B, B’ € B, we write B — B’ to mean B’ C BwB.

For any tuple of simple reflections § = (s1,..., s¢), let

UBE) ={(u, By e x B* | By =5 By =5 ... 25 By}
where B% = u~!Bu. Action of G by conjugation.

Lem If § changes by a braid move, then U(5)
changes by a fixed isomorphism that preserves .

Up to these isomorphisms, U(5) only depends on the
underlying braid /3 of §, so we write U(3).

G also acts on
UB) ={(u,B,B") €eU(B) x B|ue B},
X(8)={(1,B) eu(B)}
={§€B£|Bgs—1>313—2>~-~5—2>34}.

The fibers of Zj(d) — U(B) are Springer fibers, which
have a W-action on cohomology.

Thm (T) There’s a W-action on H G(ZI(J)) such
that:

1. The invariants are H? . (U(8)).
2. The anti-invariants (sgn-isotypics) are HY (X (53)).

(We actually need a derived version of U (8).)



The superpolynomial is an isotopy invariant
P : {links in R%} — Z[q][a®?, t+!]

P|i—_1 is the HOMFLYPT series in a and q%.

P is itself the graded dimension of HOMFLYPT or
Khovanov-Rozansky homology.

For V € Rep(Sy), let V[A'] = Homg,, (\"(C"~1), V).

Note that [A°] = invariants, [A" 1] = anti-invariants.

Thm (T) Take G = SLy, so that W = S,,.
If /3’ is the link closure of 3, then

P(B) oc > (a*qF)iq = 179 erlV HE (U(8)) N
1,5,k

Let 8, be a braid on n strands whose link closure is
the (d,n) torus knot T} ,,.

Mellit, building on Elias—Hogancamp, computed
P(T,,,). Lowest a-degree part is q*‘SCd/n(q7 qt?).

Cor (T) gr¥’ H*(U(B4)) encodes Ca/nlg, qt?).

Nakagane, building on Kélméan, showed that

lowest a-degree of P(Ty,,,)
o
highest a-degree of P(Tqyn n)

(GHMN generalized to the full twist of any braid.)

Cor (T) gl H*(U(Ba)) = grl H (X (Batn))-



Ex Take % = %, so that §= (s1,$1,s1). The link
closure J is a trefoil, for which

P(B) =a?q ' +a®qt? + o'’
Note that [a=2¢P(B)]la—0 = €3/2(g, qt?).

Meanwhile, gr¥¥ o (Bd)) looks like:
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We can generalize §; to any G, using the Coxeter
number h in place of n.

Thm (T) The Armstrong—Reiner—Rhoades parking
space of (W, d) is

@ ng H* G(Z/{( Ba))-

Cor (T) [U(Ba)(Fq)/G(Fq)| x Ew,a(g, —1) in all
types.

Sommers defined a certain decomposition

Cw,a(q) = Z[“]GU/G [ul,a(@);
recovering the usual Kreweras numbers for W = S,,.
Cor (T) IfU(Bqg,[u]) CU(Bq) is the preimage of [u],
then |U(B4, [u])(Fq)/G(Fq)| o< Kr(y) a(q).



§3 Deograms

We know much more about X' () than Z/{(B),Z:{v(ﬁ)
Fix By € Band w € W. Let

X4 (B,w) = {é

Lem [X(Bow)/G]

By 2L B 2% ... 24 By,
BY = By '

~ [X4 (8,w)/(B4 N BY)].

Thm (CGGLSS, GLSB) X, (8, w) is a cluster
variety.

For u € W, the open Richardson variety of GLTW is

R, w,B * 7X+(B u[)ufl’wo))

where wo € W is the longest element and o, is the
braid lift of w.

A u-Deogram of §= (s1,...,8¢) is

z; € {e,s;} Vi,

Z=(x1,...,x¢) s.t. 1wy < X1 Ti—18; Vi,

U= Ty
Let D, (5) be the set of all u-Deograms of 5. Let
s ={i|zi=e},

Let M, (5) C Dy (5) consist of & that minimize |ez|.

diz{z'|a:1---a:¢<:v1---:pi,1}.

Thm (Deodhar) If 3 arises from §, then
o 8= erl_)“(g)((cx)ef x Cdz),

Thm (GLTW) If § = f,, then | M. (3)] = C.q.
In fact, (¢ — 1) 7™M |R? | (Fq)| = Cw,alq)-

Lusztig’s truncated F.T. on Irr(WW) essential to proof.



§4 Coda
How is Ug,q = U(Bq) related to Gra(vq)?

Bezrukavnikov—Boxeida—McBreen—Yun recently
constructed a “wild Hitchin fibration”

fa,a: Mg,a = Ag,a

and an action C* ~ M 4, which contracts it onto a
fiber of f& 4 homeomorphic to Grg(vq).

Writing-in-progress [Ug q/G] and Mg g are
homeomorphic at the level of coarse spaces.

Arises from nonabelian Hodge theory on CP! with:

e a regular singularity at « = 0 of nilpotent residue,

e a wild singularity of type v4 9T a4t ¢ = oo

x

N C g nilpotent variety

There are spaces Flg(v4) and /,\/Vl{(;‘d that we expect
to fit into a diagram:

Flo(va) =20 Ma g —= Uc,a/C
Gra(va) =t Mgag —— Uga/G
N/G N/G u/G

The first row is “parking”. The second is “Catalan”.

Thank you for listening.
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