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1 Fruit

“You can’t add together apples and oranges.”

Well, not in real life.

But in mathematics, you can make up a new world
where this is possible.

The free vector space on X = {apple, orange, pear}:

C⟨X⟩ = {a · apple + b · orange + c · pear | a, b, c ∈ C}.

Natural ways to do addition and scalar multiplication
on C⟨X⟩.

Too dumb? The vectors “apple” and “orange” just
sum to “apple + orange”.

But there’s a vector space where it simplifies further.

(1) Start with some relations like

pear ∼ apple + orange, orange ∼ 2 · apple.

(2) Let Rel be the span of

pear − apple − orange, orange − 2 · apple.

(3) Extend ∼ to an equivalence relation on C⟨X⟩:

v ∼ v′ ⇐⇒ v − v′ ∈ Rel.

The set of equivalence classes is a new vector space
C⟨X⟩/Rel, in which ∼ defines equality.
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2 Knots and Links I’m interested in knots and links.

Knot diagrams:

Links allow multiple circles:

An oriented link diagram is a link diagram where we
give each circle a direction/orientation.

Also interested in diagrams that are strictly inside a
given region Ω ⊆ R2.

Will mainly focus on Ω = R2 and Ω = R2 \ 0.

We will treat two diagrams in Ω as equal as long as
they are isotopic:

That is, we can deform one into the other within Ω,
without tearing any circles.

Let LΩ be the set of all oriented link diagrams in Ω,
including the empty diagram.

C⟨LΩ⟩ = {finite linear combos of elements of LΩ}

is usually huge!

To study it, try to find equivalence relations on it that
give us smaller, more tractable vector spaces.

This is called skein theory.
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The interesting parts of links are the crossings.

One thing that we can do with links, which we could
not do with fruit:

We can specify local relations, that relate diagrams
whenever they differ at a single crossing.

E.g., we might have three diagrams that only differ at
one crossing:

We will interpret a relation on these crossings as a
relation on every such triple of oriented link diagrams.

Fix constants a ̸= 0 and q ̸= 0, 1.

It turns out that the following local skein relations are
especially interesting.

When Ω ̸= R2, we will be a bit more restrictive:

We will only apply the relations when the drawings
take place inside an open disk inside Ω.

E.g., we will not simplify a circle using the bottom left
relation when Ω has a hole inside the circle.
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The relations give us a linear subspace RelΩ ⊆ C⟨LΩ⟩.

The HOMFLYPT skein module of Ω is

SkΩ = C⟨LΩ⟩/RelΩ.

Thm (≈ HOMFLYPT 1986)

SkR2 = C.

That is, any diagram in R2 is a scalar multiple of the
empty diagram modulo the skein relations.

The (unreduced) HOMFLYPT invariant of a link is
the scalar that we get from any diagram of it.

Example Consider the following element in C⟨LR2 ⟩:

L =

Modulo the “crossing” rule,

L = + (q − q−1)

Modulo ⃝ = a−a−1

q−q−1 · ∅,

L =
(

a − a−1

q − q−1

)2

· ∅ + (a − a−1) · ∅.

So the scalar is
(

a−a−1

q−q−1

)2
+ a − a−1.
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For Ω = R2 \ 0, what happens?

Cannot simplify circles in R2 \ 0 that go around 0.

In fact: pairwise distinct diagrams pn for all n ∈ Z.

p5 =

(n > 0 is counterclockwise, n < 0 clockwise.)

We set p0 = ∅ as a matter of convention.

There are even more diagrams in R2 \ 0 that we
cannot simplify.

If we have two diagrams L and L′, then we can put L

around L′ to get a new diagram

L · L′.

Note that L · L′ and L′ · L are isotopic.

Extend this to a binary operation on SkR2\0, by
making it distribute over addition.

Think of this as a multiplication law, which turns
SkR2\0 into a ring.

Monomials in the pn’s, like p1p2p3 or p2
−1, do not

simplify further.
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Thm (Turaev 1988)

The collection of all monomials in the pn’s is a basis
for SkR2\0 as a vector space.

Corollary As a ring,

SkR2\0 = C[p0, p±1, p±2, . . .].

Remark

The subring generated by p0, p1, p2, . . . is isomorphic
to a very famous ring in combinatorics, called the ring
of symmetric functions.

3 Plethysm Another operation on SkR2\0:

The first diagram above is p2. Call the middle one L.

The last diagram is the plethysm L ◦ p2.

If L had multiple knot components, then we would
form L ◦ p2 by inserting p2 into each component,
following their orientations.

For any n, we define L ◦ pn analogously.
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It can be fun to check that:

(1) pm ◦ pn = pmn for any m, n.

How to define L ◦ K for any K and L?

Every element of SkR2\0 is a polynomial in the pn’s,
so it is enough to declare:

(2) − ◦ K distributes over + and · , for all K.

(3) pn ◦ − distributes over + and · , for all n.

Thm (1)–(3) define a binary operation on SkR2\0.

This operation is associative, non-commutative, and
has identity element p1:

L ◦ p1 = L = p1 ◦ L for any L.

Let C[t] be the ring of polynomials in t.

SkR2\0 : p1 : plethysm

C[t] : t : composition of polynomials

By comparison, the composition operation

(g ◦ f)(t) = g(f(t))

on C[t] is characterized by:

(1) f(t) ◦ t = f(t) = t ◦ f(t) for any f .

(2) − ◦ f(t) distributes over + and · , for any f .

Remark tn is analogous to pn
1 , not to pn:

E.g., tn ◦ (f1(t) + f2(t)) ̸= tn ◦ f1(t) + tn ◦ f2(t).
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4 Riordan Revisited

In combinatorics, we like to study number sequences
c0, c1, c2, . . . through generating functions

c(t) = c0 + c1t + c2t2 + . . . ,

a.k.a. formal power series. They form a ring C[[t]].

The word “formal” means we don’t worry about
whether c(t) converges at any given value of t.

Any polynomial is a power series: C[t] ⊆ C[[t]].

But ◦ does not extend to a binary operation on C[[t]].

Example If c(t) = 1 + t + t2 + . . ., then c(1) diverges.

Similarly, c(1 + blah(t)) will never work. By contrast:

c(t + t2) = 1 + (t + t2) + (t + t2)2 + (t + t2)3 + . . .

=


1

+ t + t2

+ t2 + 2t3 + t4

+ t3 + 3t4 + · · ·
+ t4 + · · ·

= 1 + t + 2t2 + 3t3 + 5t4 + . . .

In general, we can form g ◦ f as long as f has zero
constant term.

Let C[[t]]◦ be the further subset of power series with
zero constant term and nonzero linear term.

Thm Any element of C[[t]]◦ has an inverse under ◦.
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In other words:

C[[t]]◦ forms a group under ◦, with identity t.

If you think about what I’ve covered, you’ll realize:

There is an analogous group where we replace

C[[t]] ⊇ C[t]

with a certain containment

ŜkR2\0 ⊇ SkR2\0

and replace composition with plethysm.

Maybe interesting for symmetric functions.

Thm Any element of C[[t]]◦ has an inverse under ◦.

Proof sketch For any f ∈ C[[t]]◦, let Mf be the
infinite matrix whose columns record the powers of f :

Mf =


1
0 c1,1
0 c2,1 c2,2
...

...
. . .

 ,

where the ci,j are given by f(t)j =
∑

i≥0 ci,jti.

For example, Mt = I, the identity matrix.

In general, we can recover f from Mf by looking at
the second column.
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Since Mf is lower-triangular with nonzero diagonal
entries, it is invertible.

Now check the following facts:

(1) M−1
f

takes the form Mg for some g ∈ C[[t]]◦.

(2) Mf1◦f2 = Mf1 · Mf2 .

We deduce that for any f , there’s some g s.t.

Mg◦f = Mg · Mf = M−1
f

· Mf = I = Mt.

Thus g(t) ◦ f(t) = t.□

This proof shows that the group C[[t]]◦ embeds into
the group of invertible infinite matrices GL∞.

Recall that the set C[[t]]× of power series with nonzero
constant term forms a group under multiplication.

The map f 7→ Mf can be extended to an embedding

C[[t]]× ⋊ C[[t]]◦ ↪→ GL∞,

(u, f) 7→ Mu,f .

Shapiro’s Riordan group is the image.

This also has an analogue in the world of plethysm.

Thank you for listening.
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