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1 Fruit
“You can’t add together apples and oranges.”

Well, not in real life.

But in mathematics, you can make up a new world
where this is possible.

The free vector space on X = {apple, orange, pear}:
C(X) = {a-apple + b - orange + ¢ - pear | a,b,c € C}.

Natural ways to do addition and scalar multiplication
on C(X).

Too dumb? The vectors “apple” and “orange” just
sum to “apple + orange”.

But there’s a vector space where it simplifies further.
(1) Start with some relations like
pear ~ apple 4+ orange, orange ~ 2 - apple.
(2) Let Rel be the span of
pear — apple — orange, orange — 2 - apple.
(3) Extend ~ to an equivalence relation on C(X):

v~v = v—v € Rel

The set of equivalence classes is a new vector space
C(X)/Rel, in which ~ defines equality.



2 Kbnots and Links I'm interested in knots and links.

Knot diagrams:

& & & FLBIR

Links allow multiple circles:

0D D& &

An oriented link diagram is a link diagram where we
give each circle a direction/orientation.

Also interested in diagrams that are strictly inside a
given region ) C R2.

Will mainly focus on Q = R? and Q = R2\ 0.

We will treat two diagrams in 2 as equal as long as
they are isotopic:

That is, we can deform one into the other within €2,
without tearing any circles.

Let L be the set of all oriented link diagrams in 2,
including the empty diagram.

C(Lq) = {finite linear combos of elements of L}

is usually huge!

To study it, try to find equivalence relations on it that
give us smaller, more tractable vector spaces.

This is called skein theory.



The interesting parts of links are the crossings.

One thing that we can do with links, which we could
not do with fruit:

We can specify local relations, that relate diagrams
whenever they differ at a single crossing.

E.g., we might have three diagrams that only differ at

XXX

We will interpret a relation on these crossings as a

one crossing:

relation on every such triple of oriented link diagrams.

Fix constants a # 0 and ¢ # 0, 1.

It turns out that the following local skein relations are
especially interesting.

O -r¥= Py

When Q # R2, we will be a bit more restrictive:

We will only apply the relations when the drawings
take place inside an open disk inside .

E.g., we will not simplify a circle using the bottom left
relation when €2 has a hole inside the circle.



The relations give us a linear subspace Relg C C(Lgq).

The HOMFLYPT skein module of Q is

Sk = C(Lq)/Relq.

Thm (= HOMFLYPT 1986)

That is, any diagram in R? is a scalar multiple of the
empty diagram modulo the skein relations.

The (unreduced) HOMFLYPT invariant of a link is
the scalar that we get from any diagram of it.

Example Consider the following element in C(Lg2):

- (D

Modulo the “crossing” rule,

- OO wu-n O

—1

Modulo O = 7‘;:;,1 -0,

a—a1 2
L = (qql> 0+ (a—a”1)-0.

2
-1
So the scalar is (Z:‘Zl ) +a—a"l.

q



For Q = R?\ 0, what happens?

Cannot simplify circles in R? \ 0 that go around 0.

In fact: pairwise distinct diagrams p,, for all n € Z.

ps

(n > 0 is counterclockwise, n < 0 clockwise.)

We set pg = () as a matter of convention.

There are even more diagrams in R? \ 0 that we
cannot simplify.

If we have two diagrams L and L', then we can put L
around L' to get a new diagram

L-L.

Note that L - L’ and L’ - L are isotopic.

Extend this to a binary operation on SkR2\O7 by
making it distribute over addition.

Think of this as a multiplication law, which turns
Skg2\¢ into a ring.

Monomials in the p,’s, like p1pap3 or p%l, do not
simplify further.

o



3 Plethysm Another operation on SkRz\O:

Thm (Turaev 1988)

The collection of all monomials in the p,’s is a basis \ / \\

for Skg2\¢ as a vector space. ® U > @
Corollary  As a ring,

The first diagram above is pa. Call the middle one L.

Sk = C|po, s sed]e
R2\0 [Po, p£1, P2 ] The last diagram is the plethysm L o ps.

Remark

. L . If L had multiple knot components, then we would
The subring generated by po, p1,p2, ... is isomorphic . K K
. i i K form L o pa by inserting p2 into each component,
to a very famous ring in combinatorics, called the ring i k R N
. . following their orientations.
of symmetric functions.

For any n, we define L o p,, analogously.



It can be fun to check that:
(1) pm ©pn = pmn for any m,n.

How to define L o K for any K and L?

Every element of SkRz\o is a polynomial in the py’s,
so it is enough to declare:

(2) — o K distributes over + and -, for all K.

(3) pn o — distributes over + and -, for all n.

Thm (1)—(3) define a binary operation on Skg2\o-

This operation is associative, non-commutative, and
has identity element p;:

Lopy =L =p;olL for any L.

Let C[t] be the ring of polynomials in ¢.

Skrz\o : P1 plethysm

Clt] cot composition of polynomials

By comparison, the composition operation
(90 F)(®) = 9(£ (1))

on C|[t] is characterized by:

(1) f(@t)ot=f(t) =to f(t) for any f.

(2) — o f(t) distributes over + and -, for any f.

Remark t" is analogous to p7', not to pn:

E.g., t" o (f1(t) + f2(t)) # t™ o fi(t) +t™ o fa(2).



4 Riordan Revisited

In combinatorics, we like to study number sequences
. through generating functions

C€p,C1,C2, . -
c(t):co+c1t+02t2+...,

a.k.a. formal power series. They form a ring C[¢].

The word “formal” means we don’t worry about
whether ¢(t) converges at any given value of ¢.

Any polynomial is a power series: C[¢] C C[t].

But o does not extend to a binary operation on C[t].

Example If ¢(t) =1+t+t2+ ..., then c(1) diverges.

Similarly, ¢(1 + blah(t)) will never work. By contrast:

ct+t) =14+ + @+ + 1 +tH)% + ...

1
+t+t2
= +t2 423 ¢4
+t3 43t 4.
+tt 4

=1+t+2t2 4383 +5t4 +...

In general, we can form g o f as long as f has zero
constant term.

Let C[t]° be the further subset of power series with
zero constant term and nonzero linear term.

Thm Any element of C[t]° has an inverse under o.



In other words:

C[t]° forms a group under o, with identity ¢.

If you think about what I've covered, you’ll realize:

There is an analogous group where we replace
Clt] 2 C[t]
with a certain containment
S/I{RQ\O B) SkRz\O

and replace composition with plethysm.

Maybe interesting for symmetric functions.

Thm Any element of C[¢]° has an inverse under o.

Proof sketch For any f € C[t]°, let My be the
infinite matrix whose columns record the powers of f:

1
0 ci1
Mp=10 c21 cop ’

where the c¢; ; are given by ft)y = Zi>0 ci’jti.

For example, My = I, the identity matrix.

In general, we can recover f from My by looking at
the second column.



Since M} is lower-triangular with nonzero diagonal
entries, it is invertible.

Now check the following facts:

(1) M;l takes the form M, for some g € C[t]°.

(2) My op, = My, - My,.

We deduce that for any f, there’s some g s.t.
Mgoy = Mg - Mg =M, "My =1=M,.

Thus g(¢t) o f(t) =¢.0

This proof shows that the group C[t]° embeds into
the group of invertible infinite matrices GLno.

Recall that the set C[t]* of power series with nonzero
constant term forms a group under multiplication.

The map f — My can be extended to an embedding

C[]* xC[{]° < GLee,
('LL,f) g Mu,f

Shapiro’s Riordan group is the image.

This also has an analogue in the world of plethysm.

Thank you for listening.



