

Higgs Bundles and Global Springer Theory

Minh-Tâm Quang Trinh

Massachusetts Institute of Technology

Plan of talk:

- 1. Ngô (2008)
- 2. Yun (2011)
- 3. Oblomkov-Yun (2014)

Sources:

- Ngô, « Le Lemme fondamental . . . »
- Yun, "Global Springer Theory"
- Yun, "Lectures on Springer Theories..."
- Oblomkov–Yun, "Geometric Representations..."

§1 Ngô (2008)

Let $G = \mathrm{SL}_n(\mathbf{C})$ and $\mathfrak{g} = \mathfrak{sl}_n(\mathbf{C})$.

Centralizer group scheme:

$$I = \{ (\gamma, g) \in \mathfrak{g} \times G \mid \mathrm{Ad}(g)\gamma = \gamma \}$$

For any field F and $\gamma \in \mathfrak{g}(F)$, we say that:

- γ is regular iff dim I_{γ} is minimal. In this case, I_{γ} is commutative.
- γ is regular semisimple iff I_{γ} is a torus.

Let $\mathfrak{g}^{rs} \subseteq \mathfrak{g}^{reg} \subseteq \mathfrak{g}$ be the corresponding loci.

Let $\mathbf{c} = \mathbf{A}^{n-1} /\!\!/ S_n \simeq \operatorname{Spec} \mathbf{C}[e_2, \dots, e_n].$

The Chevalley map

$$\chi:\mathfrak{g}\to\mathfrak{c}$$

sends a matrix γ to the tuple $a = (a_i)_{i=2}^n$ given by

$$\det(t - \gamma) = t^n + a_2 t^{n-2} + \dots + a_{n-1} t + a_n.$$

Let \mathfrak{c}° be the locus where this polynomial is separable.

 $\mathbf{Lem} \quad \chi|_{\mathfrak{g}^{\mathrm{reg}}}: \mathfrak{g}^{\mathrm{reg}} \to \mathfrak{c} \text{ is surjective}.$

Lem
$$\mathfrak{g}^{rs} = \chi^{-1}(\mathfrak{c}^{\circ}).$$

Lem $I|_{\mathfrak{g}^{\text{reg}}}$ descends to \mathfrak{c} : There's a smooth group scheme J over \mathfrak{c} and

$$\chi^* J|_{\mathfrak{g}^{\mathrm{reg}}} \xrightarrow{\sim} I|_{\mathfrak{g}^{\mathrm{reg}}}.$$

It extends to a morphism $\chi^* J \to I$.

Explicitly, if $\gamma \in \mathfrak{g}(F)$ and $\chi(\gamma) = a$, then:

$$J_a = \left\{ f \in (F[t]/a(t))^{\times} \middle| \prod_{\substack{\lambda \in \mathbf{C} \\ a(\lambda) = 0}} f(\lambda) = 1 \right\}$$

and $J_a \to I_{\gamma}$ sends $f \mapsto f(\gamma)$.

Ex If $\mathfrak{g} = \mathfrak{sl}_2$, then $\chi \simeq \det : \mathfrak{sl}_2 \to \mathbf{A}^1$. $J(\mathbf{C})$ is a family of \mathbf{C}^{\times} 's degenerating to $\mathbf{C}^+ \rtimes \{\pm 1\}$. Since J is a commutative group scheme, $\mathbb{B}J$ forms a commutative group stack over $\mathfrak{c}.$

The fiberwise action

$$\chi^* \mathbb{B} J = \mathbb{B}(\chi^* J) \curvearrowright \mathbb{B} I$$
 over \mathfrak{g}

descends to a fiberwise action

$$\mathbb{B}J \cap \chi_* \mathbb{B}I = [\mathfrak{g}/G]$$
 over \mathfrak{c} .

It is simply transitive on the regular loci of the fibers.

The geometry of this action underlies the geometry of both affine Springer fibers and Hitchin fibers.

Interlude Suppose $H \curvearrowright X$ and $H \curvearrowright V$. Recall:

- An H-bundle E → X is principal iff it trivalizes over an fpqc cover of X.
- The associated bundle $V_E \to X$ is defined by

$$V_E = (E \times V)/H$$

as an fpqc quotient.

Principal H-bundles are classified by maps $X \to \mathbb{B}H$.

Ex Suppose $L \to X$ is a line bundle.

Its frame bundle $L^{\times} \to X$ is a principal \mathbf{G}_m -bundle such that $L = (\mathbf{A}^1)_{L^{\times}}$.

Suppose X is integral, separated, noetherian, and $\hat{\mathcal{O}}_{X,v} \simeq \mathbf{C}[\![x]\!]$ for all $v \in X(\mathbf{C})$.

An L-twisted G-Higgs bundle on X is a section of

$$[\mathfrak{g}/G]_{L^{\times}} \to X,$$

where $\mathbf{G}_m \curvearrowright [\mathfrak{g}/G]$ by scaling \mathfrak{g} . Equivalent to (E,θ) with:

- $E \to X$ a principal G-bundle.
- θ a global section of $\mathfrak{g}_E \otimes L \to X$.

Since $G = \mathrm{SL}_n$, this is equivalent via $V = (\mathbf{A}^n)_E$ to:

- $V \to X$ a rank-n vector bundle with $\underline{\det}(V)$ trivial.
- θ a traceless global section of $\underline{\operatorname{End}}(V)\otimes L$.

The map $\chi: \mathfrak{g} \to \mathfrak{c}$ sends:

scaling action
$$\mathbf{G}_m \curvearrowright \mathfrak{g}$$

$$\label{eq:gamma} \psi$$
 weighted action $\mathbf{G}_m \curvearrowright \mathfrak{c} = \operatorname{Spec} \mathbf{C}[e_i]_{i=2}^n$

The weights are $c \cdot e_i = c^i e_i$.

So χ induces a *Hitchin morphism* $h: \mathcal{M} \to \mathcal{A}$, where

$$\begin{split} \mathcal{M} &= \mathcal{M}_{X,L} = \operatorname{H}^0(X, [\mathfrak{g}/G]_{L^{\times}}), \\ \mathcal{A} &= \mathcal{A}_{X,L} = \operatorname{H}^0(X, \mathfrak{c}_{L^{\times}}) \\ &= \bigoplus_{i=2}^n \operatorname{H}^0(X, L^{\otimes i}). \end{split}$$

Intuitively, $h(V, \theta)$ lists coefficients of $\det_L(t - \theta)$.

The fiberwise action $\mathbb{B}J \curvearrowright [\mathfrak{g}/G]$ over \mathfrak{c} is equivariant with respect to the \mathbf{G}_m -actions.

Therefore, $\mathcal{P} \curvearrowright \mathcal{M}$ over \mathcal{A} , where

$$\mathcal{P} = \mathcal{P}_X := \mathrm{H}^0(X, (\mathbb{B}J)_{L^{\times}})$$

is called the *(relative)* Picard stack.

Motivation If X is a nice curve and $a \in \mathcal{A}$ is also nice, then:

- • P_a parametrizes line bundles of a fixed degree on a certain branched cover X_a → X.
- \mathcal{M}_a is a certain compactification of \mathcal{P}_a .

We say that X_a is the *spectral curve* of a.

Global Picture Let X be a smooth proper curve.

Fix
$$a = (a_i)_{i=2}^n \in \mathcal{A} = \bigoplus_{i=2}^n \mathcal{H}^0(L^{\otimes i})$$
.

Let y be a vertical coordinate on L, and let

$$X_a = \{y^n + a_2 y^{n-2} + \dots + a_{n-1} y + a_n = 0\} \subseteq L.$$

Let \mathcal{A}^{\spadesuit} , resp. \mathcal{A}^{\heartsuit} , be the locus in \mathcal{A} where X_a is integral, resp. reduced.

Lem If $a \in \mathcal{A}^{\spadesuit}$, then \mathcal{M}_a is proper.

Lem If X has genus zero and $a \in \mathcal{A}^{\heartsuit}$, then

$$\mathcal{P}_a \simeq Pic^d(X_a)$$
 and $\mathcal{M}_a \simeq \overline{Pic}^d(X_a)$,

where $d = \binom{n}{2} \deg L$.

Local Picture For all $v \in X(\mathbf{C})$, let

$$\hat{X}_v = \operatorname{Spec} \hat{\mathcal{O}}_v \quad \text{and} \quad \hat{X}_v^{\circ} = \operatorname{Spec} \hat{F}_v.$$

Abbreviate $a_v = a|_{\hat{X}_v}$ and $L_v = L|_{\hat{X}_v}$.

Prop If $a \in \mathcal{A}^{\heartsuit}(\mathbf{C})$ and $\gamma \in \chi^{-1}(a_v)$, then

$$[\mathcal{P}_{\hat{X}_v,a_v} \backslash \mathcal{M}_{\hat{X}_v,\hat{\mathcal{O}}_v,a_v}] \simeq [\mathcal{P}_{\gamma} \backslash \mathcal{M}_{\gamma}]$$

where

$$\mathcal{M}_{\gamma} = \{ g \in G(\hat{F}_v) / G(\hat{\mathcal{O}}_v) \mid \operatorname{Ad}(g^{-1})\gamma \in \mathfrak{g}_{L^{\times}}(\hat{\mathcal{O}}_v) \},$$
$$\mathcal{P}_{\gamma} = I_{\gamma}(\hat{F}_v) / J_{a_v}(\hat{\mathcal{O}}_v),$$

given the structure of C-ind-schemes.

Note: \mathcal{M}_{γ} is a *(spherical)* affine Springer fiber.

$Proof\ sketch$

The fpqc quotient $G(\hat{F}_v)/G(\hat{\mathcal{O}}_v)$ classifies (E,ι) with:

- $E \to \hat{X}_v$ a principal G-bundle.
- $\iota : E|_{\hat{X}_v^{\circ}} \xrightarrow{\sim} G \times \hat{X}_v^{\circ}.$

 \mathcal{M}_{γ} classifies (E, θ, ι) with:

- $(E,\theta) \in \mathcal{M}_{\hat{X}_v,\hat{\mathcal{O}}_v,a_v}$.
- $\iota : E|_{\hat{X}_v^{\circ}} \xrightarrow{\sim} G \times \hat{X}_v^{\circ}$ such that $\iota(\theta) = \gamma$.

 \mathcal{P}_{γ} classifies (E', ι') with:

- $E' \to \hat{X}_v$ a principal J_{a_v} -bundle.
- $\iota': E'|_{\hat{X}_v^{\circ}} \xrightarrow{\sim} I_{\gamma} \times \hat{X}_v^{\circ}.$

Local to Global Suppose L admits a square root.

It defines a Kostant section

$$\mathfrak{c}_{L^{\times}} \to [\mathfrak{g}^{\mathrm{reg}}/G]_{L^{\times}},$$

which in turn induces a gluing map

$$\prod_{a(v)\notin\mathfrak{c}_{L^{\times}}^{\circ}}\mathcal{M}_{\gamma_{v}}\to\mathcal{M}_{X,L,a}$$

for any $a \in \mathcal{A}^{\heartsuit}(\mathbf{C})$ and $\gamma_v \in \chi^{-1}(a_v)$.

Thm (Ngô) If $a \in \mathcal{A}^{\spadesuit}(\mathbf{C})$, then any square root of L induces an algebraic homeomorphism

$$\frac{\mathcal{P}_{X,a} \times \prod_{a(v) \notin \mathfrak{e}_{L}^{\circ}} \mathcal{M}_{\gamma_{v}}}{\prod_{a(v) \notin \mathfrak{e}_{r}^{\circ}} \mathcal{P}_{\gamma_{v}}} \xrightarrow{\approx} \mathcal{M}_{X,L,a}.$$

Ex Let $G = SL_2$ and $X = \mathbf{P}^1$ and $L = \mathcal{O}(2)$. Then

$$\mathcal{A} = \mathrm{H}^0(X, L^{\otimes 2}) = \mathrm{H}^0(\mathbf{P}^1, \mathcal{O}(4)).$$

Fix a coordinate [x:1] on X. Spectral curves look like

$$X_a = \{y^2 + a(x) = 0\} \subseteq L,$$

where $\deg a(x) = 4$.

If $a(x) = x^3$, then

$$\mathcal{M}_{a} = \overline{Pic}^{1}(X_{a}) \simeq X_{a} \times \mathbb{B}\mu_{2},$$

$$\mathcal{P}_{a} = Pic^{1}(X_{a}) \simeq \mathbf{G}_{a},$$

$$\mathcal{M}_{\gamma_{0}} \times \mathcal{M}_{\gamma_{\infty}} = \mathbf{P}^{1} \times pt,$$

$$\mathcal{P}_{\gamma_{0}} \times \mathcal{P}_{\gamma_{\infty}} = \mathbf{G}_{a} \times 1.$$

Note: $\overline{Pic}^1(X_a) \simeq X_a \times \mathbb{B}\mu_2$ for general $a \in \mathcal{A}^{\spadesuit}(\mathbf{C})$.

§2 Yun (2011)

Z. Yun's global Springer action fits into a table:

point Springer fibers
disk \hat{X}_v affine Springer fibers \mathcal{M}_{γ_v} compact surface X parabolic Hitchin fibers $\widetilde{\mathcal{M}}_a$

Full statement involves a graded C-algebra

$$\mathbf{D}^{trig} = \mathrm{Sym}(\mathbf{V}_{\mathrm{KM}} \oplus \mathbf{C}) \otimes \mathbf{C}[W^{aff}].$$

By a Springer action, we really mean a morphism

$$\mathbf{D}^{trig} \to \bigoplus_{i} \operatorname{End}^{2i}(\tilde{h}_{*}^{\spadesuit} \mathbf{C}),$$

where \tilde{h}^{\spadesuit} is a *parabolic* version of h^{\spadesuit} .

Here, $\mathbf{V}_{\mathrm{KM}} = \mathbf{X}^*(T_{\mathrm{KM}}) \otimes \mathbf{C}$, where

$$T_{\mathrm{KM}} = \mathbf{G}_{m}^{\mathrm{cen}} \times T \times \mathbf{G}_{m}^{\mathrm{rot}}$$

is the maximal torus of a certain Kac-Moody group

$$G_{\mathrm{KM}} = \widehat{LG} \rtimes \mathbf{G}_{m}^{\mathrm{rot}}.$$

Explicitly:

- $T \subseteq G$ is a maximal torus.
- LG is the loop group given by $LG(\mathbf{C}) = G(\mathbf{C}(\!(x)\!))$ on points, and

$$1 \to \mathbf{G}_m^{\mathrm{cen}} \to \widehat{LG} \to LG \to 1$$

is the central extension formed by the frame bundle of its determinant line bundle.

• $\mathbf{G}_{m}^{\mathrm{rot}}$ acts on LG and \widehat{LG} by scaling x.

Fix a Borel $B \supseteq T$. Gives simple roots

$$\Delta = \{\alpha_1, \dots, \alpha_r\} \subseteq \Phi^* \subseteq \mathbf{X}^*(T)$$

and affine simple roots

$$\Delta^{\mathit{aff}} = \{\alpha_0\} \cup \Delta \subseteq \mathbf{X}^*(T \times \mathbf{G}_m^{\mathrm{rot}}).$$

We have Weyl groups

$$W = \langle s_{\alpha} \rangle_{\alpha \in \Delta},$$

$$W^{aff} = \langle s_{\alpha} \rangle_{\alpha \in \Delta^{aff}} \simeq \mathbf{Z} \Phi_* \rtimes W.$$

Note: Since $G = SL_n$, we have $\mathbf{Z}\Phi_* = \mathbf{X}_*(T)$.

We will use $W^{aff} \curvearrowright \mathbf{V}_{\mathrm{KM}}$ to define \mathbf{D}^{trig} .

Let u be an indeterminate.

The trigonometric DAHA in the sense of Yun is

$$\mathbf{D}^{trig} = \operatorname{Sym}(\mathbf{V}_{\mathrm{KM}} \oplus \mathbf{C}\langle u \rangle) \otimes \mathbf{C}[W^{aff}]$$

under this ring structure:

- $\mathbf{C}[W^{aff}]$ and $\mathrm{Sym}(\cdots)$ are subalgebras.
- *u* commutes with everything.
- For all $\xi \in \mathbf{V}_{\mathrm{KM}}$ and $\alpha \in \Delta^{aff}$, we have

$$s_{\alpha}\xi - {}^{s_{\alpha}}\xi s_{\alpha} = \langle \xi, \alpha^{\vee} \rangle u.$$

The grading is:

$$\deg w = 0 \qquad \text{for } w \in W^{aff},$$

$$\deg \xi = 2i \qquad \text{for } \xi \in \operatorname{Sym}^{i}(\cdots).$$

Write
$$\mathbf{X}^*(\mathbf{G}_m^{\text{rot}}) = \mathbf{Z}\delta_{\text{rot}}$$
. For any $c \in \mathbf{C}$, we set

$$\mathbf{D}_c^{trig} = \mathbf{D}^{trig}/(u + c\delta_{\text{rot}}).$$

Still graded!

Rem The usual trig DAHA is $\mathbf{D}_c^{trig}/(\delta_{\mathrm{rot}}-1)$ (up to sign??). Filtered, not graded!

Rem The subalgebra of \mathbf{D}^{trig} or \mathbf{D}^{trig}_c generated by $\operatorname{Sym}(\mathbf{V} \oplus \mathbf{C}\langle u \rangle) \otimes \mathbf{C}[W],$

where $\mathbf{V} = \mathbf{X}^*(T) \otimes \mathbf{C}$, is Lusztig's graded AHA.

To get the W-part of the global Springer action, we must extend the Hitchin morphism h.

Let $f: \tilde{\mathfrak{g}} \to \mathfrak{g}$ be the Springer morphism, and let the top square below be cartesian:

$$\begin{array}{ccc} \widetilde{\mathcal{M}} & \longrightarrow & [\widetilde{\mathfrak{g}}/G]_{L^{\times}} \\ \downarrow & & \downarrow^{f} \\ \mathcal{M} \times X & \xrightarrow{eval} & [\mathfrak{g}/G]_{L^{\times}} \\ \downarrow^{a \times \mathrm{id}} \downarrow & & \downarrow^{\chi} \\ \mathcal{A} \times X & \xrightarrow{eval} & \mathfrak{c}_{L^{\times}} \end{array}$$

Note that $[\tilde{\mathfrak{g}}/G] \simeq [\mathfrak{b}/B]$, where $\mathfrak{b} = \text{Lie}(B)$.

Let $\tilde{h}: \widetilde{\mathcal{M}} \to \mathcal{A} \times X$ be the composition.

To construct

$$\mathbf{D}^{trig} \to \bigoplus_{i} \operatorname{End}^{2i}(\tilde{h}_{*}^{\spadesuit} \mathbf{C}),$$

we need to describe the actions of

- $w \in W^{aff}$.
- $\xi \in \mathbf{X}^*(\underbrace{\mathbf{G}_m^{\mathrm{cen}} \times T \times \mathbf{G}_m^{\mathrm{rot}}}_{T_{\mathrm{KM}}}) \oplus \mathbf{Z}u.$

The W^{aff} -action is built up via induction on s_{α} 's, just like in affine Springer theory.

As for the lattice, we'll construct a map

$$\widetilde{L}: \mathbf{X}^*(T_{\mathrm{KM}}) \oplus \mathbf{Z}u \to Pic(\widetilde{\mathcal{M}}),$$

then let $\xi \curvearrowright \tilde{h}_*^{\spadesuit} \mathbf{C}$ via cupping with $\tilde{h}_*^{\spadesuit} c_1(\tilde{L}(\xi))$.

Let $\operatorname{Bun}_G^B = (\operatorname{Bun}_G \times X) \times_{\mathbb{B}G} \mathbb{B}B$. In each case,

$$\tilde{L}(\xi) = K|_{\widetilde{\mathcal{M}}}$$

for some map $\widetilde{\mathcal{M}} \to \operatorname{Bun}_G^B \to Z$ and $K \in \operatorname{Pic}(Z)$.

Write $\mathbf{X}^*(\mathbf{G}_m^{\mathrm{rot}}) = \mathbf{Z} \underline{\delta}_{\mathrm{rot}}$ and $\mathbf{X}^*(\mathbf{G}_m^{\mathrm{cen}}) = \mathbf{Z} \underline{\delta}_{\mathrm{cen}}$.

$$\begin{array}{cccc} \underline{\xi} & Z & K \\ \overline{\xi \in \mathbf{X}^*(T)} & \mathbb{B}B & K(\xi) \\ \delta_{\mathrm{rot}} & X & \omega_X \\ \delta_{\mathrm{cen}} & \mathrm{Bun}_G & \omega_{\mathrm{Bun}_G} \\ u & X & L \end{array}$$

Above, $\xi \mapsto K(\xi)$ under $\mathbf{X}^*(T) \xrightarrow{\sim} Pic(\mathbb{B}B)$.

Thm (Yun) (*) is well-defined for $\deg(L) \geq 2g_X$. (This condition ensures Ngô's "support theorem".)

Rem (*) descends to $\mathbf{D}_c^{trig} = \mathbf{D}^{trig}/(u + c\delta_{rot})$ iff

$$L \otimes \omega_X^{\otimes c} = \mathcal{O}_X.$$

This forces $c = -\deg(L)/(2g_X - 2)$.

Rem For all $(a, v) \in \mathcal{A}^{\spadesuit} \times X$, we get

$$\mathbf{D}^{trig} \curvearrowright \mathrm{H}^*(\widetilde{\mathcal{M}}_{a,v}, \mathbf{C})$$

by pullback and base-change.

But since ω_X and L trivialize upon pullback to v, the action factors through $\mathbf{D}^{trig}/(\delta_{\mathrm{rot}},u)$.

To get interesting actions on fibers, need $orbifold\ X$ and equivariant cohomology.

§3 Oblomkov-Yun (2014)

Let $\mathbf{G}_m^{(m)} \curvearrowright \mathbf{A}^2$ with weights (m,1). Then

$$X_m := [(\mathbf{A}^2 - (0,0))/\mathbf{G}_m^{(m)}]$$

is a weighted projective line in which ∞ has stabilizer μ_m and no other points are stacky.

Simultaneously,

- $\mathbf{G}_m^{\mathrm{rot}} \curvearrowright X_m \text{ via } t \cdot [x:z] = [tx:z].$
- $\mathbf{G}_m^{\mathrm{dil}} \curvearrowright \mathfrak{g}, \mathfrak{c}$ and χ is $\mathbf{G}_m^{\mathrm{dil}}$ -equivariant.

So for any $L \in Pic(X_m) \simeq \frac{1}{m} \mathbf{Z}$, we have

$$\mathbf{G}_m^{\mathrm{rot}} \times \mathbf{G}_m^{\mathrm{dil}} \cap \mathcal{M}_{X_m,L}, \widetilde{\mathcal{M}}_{X_m,L}, \mathcal{A}_{X_m,L}$$

and $\tilde{h}: \widetilde{\mathcal{M}} \to \mathcal{A}$ is equivariant.

Fix c=d/m in lowest terms. Define $\mathbf{G}_m(c)$ as the subtorus acting on $a=(a_i)_i\in\mathcal{A}$ by

$$t^d \cdot a_i(x:z) = a_i(t^m x:z)$$

The points of

$$\mathcal{A}_{c} \coloneqq \mathcal{A}^{\mathbf{G}_{m}(c)} = \mathbf{C} \langle x^{ic} z^{i(\deg(L) - c)m} \rangle_{i=2}^{n}$$

are said to be homogeneous of slope c.

Thm (OY) There are graded actions

$$\mathbf{D}^{trig} \to \operatorname{End}_{\mathbf{G}_{m}^{rot} \times \mathbf{G}_{m}^{dil}}^{2*}(\tilde{h}_{!}^{\heartsuit}\mathbf{C}),$$

$$\mathbf{D}_{c}^{trig} \to \operatorname{End}_{\mathbf{G}_{m}(c)}^{2*}(\tilde{h}_{c,!}^{\heartsuit}\mathbf{C}),$$

where $\tilde{h}_{!}^{\heartsuit}\mathbf{C},\,\tilde{h}_{c,!}^{\heartsuit}\mathbf{C}$ are viewed as ind-complexes.

Cor
$$\mathbf{D}_{c}^{trig} \curvearrowright \mathbf{H}_{\mathbf{G}_{m}(c)}^{*}(\widetilde{\mathcal{M}}_{a,0})$$
 for $a \in \mathcal{A}_{c}(\mathbf{C})$.

There's also a *rational* degeneration of this story.

The rational DAHA in the sense of Yun is

$$\mathbf{D}^{rat} = \operatorname{Sym}(\mathbf{V} \oplus \mathbf{V}^{\vee} \oplus \mathbf{C}\langle u, \delta_{\operatorname{rot}} \rangle) \otimes \mathbf{C}[W]$$

under a graded ring structure we won't state. Let $\mathbf{D}_c^{rat} = \mathbf{D}^{rat}/(u+c\delta_{\mathrm{rot}})$.

Thm (OY) If m = n, the Coxeter number, then:

- $\mathcal{A}_c^{\heartsuit} = \mathcal{A}_c^{\spadesuit}$.
- There's a graded action

$$\mathbf{D}_{c}^{rat} \to \mathrm{End}_{\mathbf{G}_{m}(c)}^{2*}(\mathrm{gr}_{*}^{\mathbf{P}} \tilde{h}_{c,*}^{\heartsuit} \mathbf{C}),$$

where $P_{\leq *}$ is the *perverse filtration* on $\tilde{h}_{c,*}^{\heartsuit}C$.

Cor In this case, $\mathbf{D}_c^{rat} \curvearrowright \operatorname{gr}^{\mathbf{P}}_* \mathrm{H}^*_{\mathbf{G}_m(c)}(\widetilde{\mathcal{M}}_{a,0}).$

Ex Take $a = (0, ..., 0, x^d) \in \mathcal{A}_c(\mathbf{C})$, where d is coprime to n.

Here, $\mathcal{M}_{a,0} \simeq \overline{Pic}^{d(n-1)/2}(\{y^n+x^d=0\})$ and $\widetilde{\mathcal{M}}_{a,0}$ is a "flagged" version.

Oblomokov-Yun:

$$\mathbf{D}_{c}^{trig} \curvearrowright \mathbf{H}_{\mathbf{G}_{m}(c)}^{*}(\widetilde{\mathcal{M}}_{a,0}),$$

$$\mathbf{D}_{c}^{rat} \curvearrowright \operatorname{gr}_{*}^{\mathbf{P}} \mathbf{H}_{\mathbf{G}_{m}(c)}^{*}(\widetilde{\mathcal{M}}_{a,0}).$$

If we specialize $\delta_{\rm rot} \to 1$ in the latter, then we get the spherical simple module of the usual rDAHA!

Garner–Kivinen have an alternate construction that does not rely on the perverse filtration.

Thank you for listening.