Mathematics
Research
Publications and Preprints
Central Elements and Cell Decompositions from Partial
Springer Resolutions
+ N. Williams
arxiv
Level-Rank Dualities for Finite Reductive Groups
Extended abstract.
+ T. Xue
arxiv
Level-Rank Dualities from \(\Phi\)-Cuspidal Pairs and Affine Springer
Fibers
+ T. Xue
arxiv Unipotent Elements and Kálmán–Serre Duality
arxiv From the Hecke Category to the Unipotent Locus
doi
arxiv
The Hilb-vs-Quot Conjecture
J. reine angew.
Math. (Crelle), 828 (2025), 83–126.
Here is a list of minor
errata. + O. Kivinen
web
Cell Decompositions of Hecke Traces and Link
Polynomials
Extended abstract. Proceedings of the 37th
International Conference on Formal Power Series and Algebraic
Combinatorics (FPSAC),
Sapporo, 2025. Sém. Lothar. Combin., 93B (2025), Paper
No. 90.
+ N. Williams
doi
arxiv
Simple Braids Tend toward Positive Entropy
J.
Knot Theory Ramifications, 33(11) (2024), 2450034, 12 pp.
+ L. Robitaille
doi
arxiv
Rational Noncrossing Coxeter–Catalan Combinatorics
Proc. Lond. Math. Soc., 129(4) (2024), e12643, 50 pp.
+ P. Galashin, T. Lam, N. Williams
doi
Extremal Primes for Elliptic Curves
J. Num.
Theory, 164 (2016), 282–298.
+ K. James, B. Tran, P.
Wertheimer, D. Zantout
doi
arxiv
Zeros of Dirichlet \(L\)-Functions over Function
Fields
Comm. Num. Theory Phys., 8(3) (2014),
511–539.
+ J. Andrade, S. J. Miller, K. Pratt
Selected Slides
- pdf Hilb vs Quot vs HOMFLYPT. UMaryland, 12/1/25.
- pdf Zeta Functions as Knot Invariants. Howard Colloquium, 9/19/25.
- pdf Affine Springer Fibers and Level-Rank Duality. UChicago, 1/7/25.
- pdf Character Formulas from Lusztig Varieties and Affine Springer Fibers. WUSTL, 9/30/24.
- pdf Catalan Combinatorics in Algebraic Geometry. MIT, 2/15/23.
- pdf Braids, Unipotent Representations, and Nonabelian Hodge Theory. Oxford, 11/30/21.
- pdf Homotopy Equivalences of Varieties Built from Braids. UMass Amherst, 10/25/21.
- pdf From \(\mathbf{H}\) to \(\mathcal{U}\). UMass Amherst, FRG Conference, 6/17/21.
Other Writing
Publications
doi
The Hodge Theory of Soergel Bimodules
Chapter 18 in
Introduction to Soergel Bimodules. Ed. B. Elias, S. Makisumi, U.
Thiel, G. Williamson. RSME Springer Series, 5 (2020),
347–367.
+ L. Taylor
Selected Slides
- pdf Knots, Plethysms and the Riordan Group. Howard, 10/31/25.
- pdf Higgs Bundles and Global Springer Theory. Edinburgh, 3/15/22.
- pdf What Gauss Knew about Knots and Braids. MIT, IAP Lecture Series, 1/20/21. Here are the accompanying problems and references.
Teaching
| Fall 2025 | web | MATH 250: Topology I |
| (Archive) |
